Abstract:
A device for measuring an expanded internal orifice of a patient includes an orifice-expanding device, a pressure measuring device, and a size-measuring device. The size-measuring device measures a dimension of the orifice after it has been expanded by the orifice-expanding device.
Abstract:
A quick-connect heart valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The heart valve includes a substantially non-expandable, non-compressible prosthetic valve and a plastically-expandable coupling stent, thereby enabling attachment to the annulus without sutures. A small number of guide sutures may be provided for aortic valve orientation. The prosthetic valve may be a commercially available valve with a sewing ring with the coupling stent attached thereto. The coupling stent may expand from a conical deployment shape to a conical expanded shape, and may include web-like struts connected between axially-extending posts. A system and method for deployment includes a hollow two-piece handle through which a balloon catheter passes. A valve holder is stored with the heart valve and the handle easily attaches thereto to improve valve preparation steps.
Abstract:
A prosthetic valve assembly and method of implanting same is disclosed. The prosthetic valve assembly includes a prosthetic valve formed by support frame and valve leaflets, with one or more tethers each having a first end secured to the support frame and the second end attached to, or configured for attachment to, to papillary muscles or other ventricular tissue. The tether is configured and positioned so as to avoid contact or other interference with movement of the valve leaflets, while at the same time providing a tethering action between the support frame and the ventricular tissue. The valve leaflets may be flexible (e.g., so-called tissue or synthetic leaflets) or mechanical.
Abstract:
A heart valve prosthesis that can be quickly and easily implanted during a surgical procedure is provided. The prosthetic valve has a base stent that is deployed at a treatment site, and a valve component configured to quickly connect to the base stent. The base stent may take the form of a self- or balloon-expandable stent that expands outward against the native valve with or without leaflet excision. The valve component has a non-expandable prosthetic valve and a self- or balloon-expandable coupling stent for attachment to the base stent, thereby fixing the position of the valve component relative to the base stent. The prosthetic valve may be a commercially available valve with a sewing ring and the coupling stent attaches to the sewing ring. The system is particularly suited for rapid deployment of heart valves in a conventional open-heart surgical environment.
Abstract:
A prosthetic spacer assembly includes a spacer body, a first anchor, and a second anchor. The first anchor and the second anchor each extend from the spacer body. The spacer body is radially compressible and self-expandable. The spacer body is configured for placement between the anterior and posterior native valve leaflets.
Abstract:
An implant includes a frame, and a textile mounted on the frame. The textile includes fibers formed from a mixture of a polymer and an additive molecule. The additive molecule includes a polyurethane backbone and one or more fluorinated end-groups at at least one end of the backbone. Other embodiments are also described.
Abstract:
An implantable device or implant is configured to be positioned within a native heart valve to allow the native heart valve to form a more effective seal. In some implementations, the implantable device or implant, or one or more portions thereof, can be configured to expand and/or contract. For example, the implantable device or implant can narrow during delivery and expand on implantation on the native heart valve.
Abstract:
A replacement mitral valve prosthesis includes a support structure and a valve body having three flexible leaflets. The support structure preferably includes an internal valve frame and an external sealing frame. The valve frame supports the flexible leaflets. The sealing frame is adapted to conform to the shape of the native mitral valve annulus. The sealing frame may be coupled to an inlet end of the valve frame, an outlet end of the valve frame, or both. A plurality of anchors is coupled to the outlet end of the valve frame. The anchors extend radially outwardly for placement behind native leaflets. The prosthesis preferably includes a skirt disposed along an exterior of the external sealing frame. The prosthesis is collapsible for delivery into the heart via a delivery catheter. The prosthesis is configured to self-expand for deployment in the heart when released from the delivery catheter.
Abstract:
A crimping system for a prosthetic heart valve comprises a split funnel comprising an elongated annular body having an enlarged insertion end, a narrower outlet end, and a central opening extending along a central longitudinal axis of the split funnel, between the insertion end and the outlet end. The body comprises first and second slots extending axially along opposite sides of the body from the outlet end toward the insertion end, the first and second slots defining first and second split portions of the body extending circumferentially between the first and second slots on opposite sides of the central opening. The crimping device is configured to crimp a prosthetic heart valve moving axially through the central opening from the insertion end to the outlet end while allowing portions of the prosthetic heart valve to protrude through the first and second slots and remain in an expanded configuration.
Abstract:
A method for treating a heart valve involves introducing a delivery catheter into a target ventricle of a heart, the delivery catheter having a coil device disposed at least partially therein, deploying a distal end of the coil device from the delivery catheter, navigating the distal end of the coil device behind a plurality of trabeculae carneae features associated with an inner wall of the ventricle to form one or more coils, and tightening the one or more coils to reduce a diameter of the target ventricle.