Abstract:
A flat panel display and method for fabricating the same are disclosed. In the flat panel display a substrate includes a pixel region having a plurality of unit pixels, and a peripheral circuit region arranged in the periphery of the pixel region. The peripheral circuit region also includes a driving circuit for driving the plurality of unit pixels. At least one circuit thin film transistor is positioned in the peripheral circuit region and includes a first semiconductor layer crystallized by a sequential lateral solidification method. At least one pixel thin film transistor is positioned in the pixel region and includes a second semiconductor layer having a channel region crystallized by one of a metal induced crystallization method or a metal induced lateral crystallization method.
Abstract:
A bi-directional WDM-PON and a method for allocating a wavelength band are disclosed. In the bi-directional WDM-PON, bi-directional transceiver modules are used to transmit optical signals of different wavelengths in the upstream and downstream directions. An L-band and an S-band are used to allocate wavelength bands to the upstream and downstream optical signals so that a wavelength band interval at which the respective wavelength bands of the upstream and downstream optical signals are spaced is set between 50 nm to 150 nm.
Abstract:
A method is provided for forming quantum holes of nanometer levels. In an ion beam scanner, ions are projected from an ion gun onto a semiconductor substrate. During the projection, ions are focused into an ion beam whose focal point is controlled to determine the diameter of the ion beam, and the ion beam is accelerated. When being incident upon the semiconductor substrate, the ion beam is deflected so as to form a plurality of quantum holes. Also provided is a light-emitting device with quantum dots. Impurities are doped onto a semiconductor substrate to form a P-type semiconductor layer on which a undoped, intrinsic semiconductor is grown to a certain thickness. A plurality of quantum holes are provided for the intrinsic semiconductor layer, followed by filling materials smaller in energy band gap than the intrinsic semiconductor in annealed quantum holes through recrystallization growth. Next, an N-type semiconductor layer is overlaid on the quantum hole layer. Composition of the materials filled in the quantum holes determines the color of the light emitted from the light-emitting device. Thus, the semiconductor device is fabricated to emit light of the three primary colors or one of them. By cutting the semiconductor device, unit display panels or elements can be prepared which emit radiation at wavelengths corresponding to red, green and blue colors.
Abstract:
A photodetector includes a metal layer that shields incident light and generates surface plasmon polaritons (SPPs), a light absorbing layer that absorbs the generated SPPs and allows charges excited by the absorbed SPPs and a localized electric field effect to tunnel, a dielectric formed at nanoholes in which at least a part of the metal layer is opened, and a semiconductor layer that induces the photocurrent based on an electric field effect of tunneled electrons. The SPPs form localized surface plasmons (LSPs) at an interface where the metal layer meets the dielectric.
Abstract:
A unit pixel arranged along with a display pixel in each pixel of a display panel is provided. The unit pixel may include a thin-film transistor (TFT) photodetector including an active layer formed of amorphous silicon or polycrystalline silicon on an amorphous transparent substrate, and at least one transistor electrically coupled to the TFT photodetector and configured to generate a voltage output from photocurrent generated from the active layer.
Abstract:
A plasmonic field-enhanced photodetector is disclosed. The photodetector absorbs surface plasmon polaritons (SPPs) by using a light absorbing layer having a conduction band and a valence band in which an energy is split, the SPPs being generated by combining surface plasmons (SPs) with photons of a light wave, and generates photocurrent based on the absorbed SPPs.
Abstract:
An air circulation roaster for tables with a safety function enabled to remove foreign substances (oil and nitrogen dioxide) generated during cooking of meat, reducing contamination of the air around the roaster, has a safety function that cuts off power pending the sensed temperature of the roast plate. The air circulation roaster has a temperature sensor detecting the temperature of the roast plate, a control box placed outside the body when the temperature cuts off power supplied to the heating lamp when the heating unit exceeds the set limit. A platinum catalyst filter placed around the outside of the heating unit is coated with platinum on a network-shaped ceramic.
Abstract:
Provided are a light-receiving element which has more capability of detecting wavelengths than that of existing silicon light-receiving elements and a unit pixel of an image sensor by using it. The light-receiving element includes: a light-receiving unit which is floated or connected to external voltage and absorbs light; an oxide film which is formed to come in contact with a side of the light-receiving unit; a source and a drain which stand off the light-receiving unit with the oxide film in between and face each other; a channel which is formed between the source and the drain and forms an electric current between the source and the drain; and a wavelength expanding layer which is formed in at least one among the light-receiving unit, the oxide film and the channel and forms a plurality of local energy levels by using strained silicon.
Abstract:
A touch screen panel using a thin film transistor (TFT) photodetector includes a touch panel including a plurality of unit patterns for sensing light reflected by a touch by using a TFT photodetector including an active layer formed of amorphous silicon or polycrystalline silicon on an amorphous transparent material, and a controller configured to scan the plurality of unit patterns and read touch coordinates as a result of the scanning.
Abstract:
A display panel includes a display pixel configured to irradiate light, an image sensor pixel included together with the display pixel in one unit pixel, including a thin film transistor (TFT) photodetector including an active layer formed of amorphous silicon or polycrystalline silicon on an amorphous transparent material, and configured to collect light reflected from a body located on the transparent material, and a processor configured to process biometrics along with positioning of the body according to the light reflected from the body.