Abstract:
Methods and apparatus for millimeter wave (mmW) beam acquisition are disclosed. An apparatus includes a transmitter configured to transmit millimeter wave (mmW) WTRU (mmW WTRU) information over a cellular system to a base station a receiver and a processor. The receiver receives a list of candidate mmW base stations (mB) including mmW acquisition start timing information from the base station, and the processor calculates correlation values around the received mmW acquisition start timing information for the mBs in the list.
Abstract:
Methods and apparatuses are described. A method of configuring a Radio Resource Control (RRC)_Connected wireless transmit/receive unit (WTRU) for wireless local area network (WLAN) cell measurement includes receiving, by the WTRU, an RRCConnectionReconfiguration message. The RRCConnectionReconfiguration message includes a measurement configuration that includes at least one WLAN measurement object on which the WTRU is to perform measurement and at least one measurement reporting configuration including at least an indication that measurement reporting is to be at least one of periodic and event-triggered. At least one measurement is performed on the at least one WLAN measurement object. A measurement report is provided based on the at least one measurement reporting configuration.
Abstract:
A wireless transmit/receive unit (WTRU) receives first timing advances and first power control commands from a first eNodeB and second timing advances and second power control commands from a second eNodeB and transmits, to the first eNodeB, a first physical uplink control channel using a first uplink component carrier. The first physical uplink control channel has a first timing adjusted by the first timing advances but not by the second timing advances and a first power level adjusted by the first power control commands but not by the second power control commands. The WTRU transmits a second physical uplink control channel using a second uplink component carrier. The second physical uplink control channel has a second timing adjusted by the second timing advances but not by the first timing advances and a second power level adjusted by the second power control commands but not by the first power control commands.
Abstract:
Methods and apparatus may perform dual-band or multi-band mesh operations. A dual-band mesh station (MSTA) capable of operating in an O-band and a D-band may seek to join a mesh network, and may receive O-band beacons from at least one MSTA in the mesh network, where the O-band beacons may include D-band mesh information. The joining MSTA may transmit D-band beacons in a time-period specified by the O-band beacon, and on a condition that a beacon response message is received, may further transmit D-band association information via O-band management frames to join mesh network on the D-band. The joining MSTA may perform contention-free scheduled access in the D-band while sharing D-band transmission information in the O-band to enable concurrent communication in the D-band by neighboring multi-band MSTAs.
Abstract:
A cellular communications network may be configured to leverage a millimeter wave (mmW) mesh network. Base stations may be configured to operate as mmW base stations (tnBs). Such base stations may be configured to participate in the mmW mesh network and to access the cellular communications network (e.g., via cellular access links). A network device of the cellular communications network (e.g., an eNB) may operate as a control entity with respect to one or more niBs. Such a network device may govern mesh backhaul routing with respect to the cellular communications network and the mmW mesh network. Such a network device may configure the mmW mesh network, for example by performing a process to join a new mB to the mmW mesh network. A WTRU may send and receive control information via a cellular access fink and may send and receive data via the mmW mesh network.
Abstract:
A method and apparatus for establishing peer-to-peer communication in a wireless network is described. A wireless transmit/receive unit (WTRU) may receive configuration information comprising periodic resources comprising time and subcarrier resources from a base station of a wireless network. The time and subcarrier resources may be used in discovery of other WTRUs. The WTRU is further configured to transmit an identification in the allocated resources and to transmit a synchronization signal to a peer WTRU for timing synchronization of the peer WTRU.
Abstract:
Methods and apparatus for millimeter wave (mmW) beam acquisition are disclosed. An apparatus includes a transmitter configured to transmit millimeter wave (mmW) WTRU (mmW WTRU) information over a cellular system to a base station a receiver and a processor. The receiver receives a list of candidate mmW base stations (mB) including mmW acquisition start timing information from the base station, and the processor calculates correlation values around the received mmW acquisition start timing information for the mBs in the list.
Abstract:
A method and apparatus are described for supporting a two-stage device-to-device (D2D) discovery using a D2D interworking function (IWF). A D2D IWF component may be configured to perform mapping between an application running on an application server and a third generation partnership project (3GPP) network, and provide a set of application programming interfaces (APIs) to allow discovery to be provided as a service to D2D applications. An application identifier may be mapped to a 3GPP identifier. Further, a method and apparatus are described for performing client-server discovery. A first wireless transmit/receive unit (WTRU) may be configured for a listen-only operation, and a second WTRU may be configured to transmit beacons. The first and second WTRUs may perform a radio access network (RAN) discovery procedure at an access stratum (AS) layer. A method and apparatus for performing charging for D2D service using a D2D IWF are also described.
Abstract:
Approaches for idle mode operations for wireless transmit/receive units (WTRUs) with zero-energy (ZE) receivers are disclosed herein. A WTRU operating in idle mode, may receive using the main transceiver over a Uu interface, an energy harvesting (EH) configuration for use over a ZE air interface. The main transceiver may be turned off, and the ZE receiver as part of a ZE idle mode operation, may detect, over the ZE air interface, and harvest energy from ZE reference signals. The WTRU may calculate an amount of energy harvested from the ZE reference signals over a first time period. The WTRU may calculate a ZE idle mode operation energy consumption over the first time period. On a condition that the ZE idle mode operation energy consumption is greater than the harvested energy, the main transceiver may be turned on and the WTRU may enter a Uu interface idle mode operation.
Abstract:
Methods and apparatuses are described herein for paring an unmanned aerial vehicle (UAV) with a UAV-controller (UAV-C). For example, a UAV having a UAV wireless transmit/receive unit (UAV WTRU) may transmit, to an access and mobility management function (AMF), a non-access stratum (NAS) request message that includes a paring request indication and a UAV-controller (UAV-C) identification (UAV-C ID). The UAV-C ID may be carried in a paring request to an unmanned aerial system (UAS) service supplier (USS)/UAS traffic management (UTM) for paring authorization of the UAV with a UAV-C associated with the UAV-C ID. The UAV may receive, from the AMF, a NAS response message that includes an unmanned aerial system (UAS) identification (UAS ID) indicating that the UAV is paired with the UAV-C, wherein the UAS ID is assigned by the USS/UTM.