Abstract:
Forces and moments are detected in a distinguishing manner by a simple structure. A supporting member (20) is positioned below a force receiving member (10), which receives forces to be detected, and between these components, at least two columnar force transmitting members (11, 12) are connected. Connecting members having flexibility are interposed at the upper and lower ends of each of columnar force transmitting members (11, 12) so that columnar force transmitting members (11, 12) can become inclined when force receiving member (10) becomes displaced upon receiving a force. Sensors (21, 22) are positioned at the respective connection parts of columnar force transmitting members (11, 12) and supporting member (20) to detect forces that are transmitted from the respective columnar force transmitting members (11, 12) to supporting member (20). Based on the detection values of sensors (21, 22), detection processing unit 30 detects, in a distinguishing manner, forces and moments acting on force receiving member (10). When four columnar force transmitting members are used, all of forces Fx, Fy, and Fz and moments Mx, My, and Mz can be detected.
Abstract:
In a liquid crystal display device including a liquid crystal display panel (10) including a liquid crystal layer (3) sandwiched between a first substrate (1) and a second substrate (2) having transparent electrodes (5, 6) on inner surfaces opposing to each other, the film thickness of at least one of the transparent electrodes (5, 6) formed on the first and second substrates (1, 2) is set so that light passing through the transparent electrode and exhibiting a maximum transmittance has a color within either a region defined by an x value of 0.22 to 0.28 and a y value of 0.21 to 0.31 or a region defined by an x value of 0.28 to 0.34 and a y value of 0.22 to 0.35 in a chromaticity diagram of a CIE 1931 color system using a white light source. This reduces coloring irregularities due to a film thickness error caused during manufacturing of the transparent electrodes to enable performance of uniform display.
Abstract:
The invention provides a force detector in which power consumption is suppressed. Four electrodes E11 through E14 are formed on a substrate, and an elastic deformable body formed of a rubber film is disposed thereon. A conductive coating is applied on the lower surface of the elastic deformable body to provide a displacing conductive layer 26. Four capacitance elements C11 through C14 are comprised by the electrodes E11 through E14 and the displacing conductive layer 26 opposed to the electrodes. The capacitance values thereof are converted into voltage values V11 through V14 by C/V converter circuit 50, and based on operation by signal processing circuit 60, an external force applied to the elastic deformable body is detected. A pair of contacting electrodes E15 and E16 are formed on the substrate, and when an external force with a predetermined strength or more is applied, the elastic deformable body deforms, and the displacing conductive layer 26 comes into contact with both electrodes E15 and E16, simultaneously. The potential of the electrode E16 is taken-in from the terminal T5, and when said potential is Vcc, the C/V converter circuit 50 is operated in a standby mode with less power consumption, and when said potential is GND, the circuit is operated in a normal mode.
Abstract:
An electrode layer is formed on the upper surface of a first substrate, and a processing for partially removing the substrate is carried out in order to allow the substrate to have flexibility. To the lower surface of the first substrate, a second substrate is connected. Then, by cutting the second substrate, a working body and a pedestal are formed. On the other hand, a groove is formed on a third substrate. An electrode layer is formed on the bottom surface of the groove. The third substrate is connected to the first substrate so that both the electrodes face to each other with a predetermined spacing therebetween. Finally, the first, second and third substrates are cut off every respective unit regions to form independent sensors, respectively. When an acceleration is exerted on the working body, the first substrate bends. As a result, the distance between both the electrodes changes. Thus, an acceleration exerted is detected by changes in an electrostatic capacitance between both the electrodes.
Abstract:
The present invention is a fire-resistant paint containing an epoxy resin, a hardener, and an inorganic filler wherein {circle around (1)} for the total of 100 weight parts of the epoxy resin and the hardener, {circle around (2)} 200-500 weight parts of the inorganic filler, chosen from a group consisting of neutralized thermally expandable graphite, metal carbonate, and a hydrated inorganic compound is contained; {circle around (3)} for the inorganic filler, at least 15-400 weight parts of neutralized thermally expandable graphite is contained; and {circle around (4)} the viscosity of the fire-resistant paint is 1-1,000 ps as measured by a B-type viscometer. The fire-resistant paint of the present invention has particularly remarkable fire resistance, and can be used in a wide range of applications.
Abstract:
A bottom fixed layer 110, displacement layer 125, and top fixed layer 130 are fixed in a layered structure by way of intervening pedestals 145, 155, which serve as spacers between the layers. The bottom and top fixed layers 110, 130 are rigid dielectric substrates. The displacement layer 125 is a flexible conductive substrate. On the top of the bottom fixed layer 110 are formed an electrode E11 on the right, electrode E12 on the left, and a washer-shaped electrode E15 in the middle. On the bottom of the top fixed layer 130 are formed an electrode E21 on the right, electrode E22 on the left, and a washer-shaped electrode E25 in the middle. These electrodes and the displacement layer 125 together form capacitance elements C11 to C25. When acceleration acts on the working body 160, the displacement layer 125 is displaced and a change in capacitance occurs in various capacitance elements. The X-axis acceleration component can then be calculated as (C11+C22) -(C12+C21), and the Z-axis acceleration component can be calculated as C25-C15.
Abstract:
A flexible substrate (110) having flexibility and a fixed substrate (120) disposed so as to oppose it are supported at their peripheral portions by a sensor casing (140). An oscillator (130) is fixed on the lower surface of the flexible substrate. Five lower electrode layers (F1 to F5: F1 and F2 are disposed at front and back of F5) are formed on the upper surface of the flexible substrate. Five upper electrode layers (E1 to E5) are formed on the lower surface of the fixed substrate so as to oppose the lower electrodes. In the case of detecting an angular velocity &ohgr; x about the X-axis, an a.c. voltage is applied across a predetermined pair of opposite electrode layers (E5, F5) to allow the oscillator to undergo oscillation Uz in the Z-axis direction. Thus, a Coriolis force Fy proportional to the angular velocity &ohgr;x is applied to the oscillator in the Y-axis. By this Coriolis force Fy, the oscillator is caused to undergo displacement in the Y-axis direction. As a result, the distance between opposite electrode layers (E3, F3) arranged in the positive direction of the Y-axis becomes smaller, and the distance between opposite electrode layers (E4, F4) arranged in the negative direction of the Y-axis becomes greater. Thus, capacitance value C3 increases and capacitance value C4 decreases. By change of the capacitance value, it is possible to detect the magnitude of the Coriolis force Fy, and to determine angular velocity &ohgr;x. Similarly, it is possible to detect an angular velocity &ohgr;y about the Y-axis and an angular velocity &ohgr;z about the Z-axis.
Abstract:
Described in the present invention is a hair dyeing method comprising treating the hair with a hair bleaching agent and then, without rinsing off the bleaching agent, with a direct hair dye. The present invention makes it possible to color the hair into a vivid color in a short time.
Abstract:
A ferromagnetic powder composition for dust cores contains a ferromagnetic metal powder and 0.1-15% by volume based on the powder of titania sol and/or zirconia sol. The composition is pressure molded and desirably annealed into a dust core which exhibits a high magnetic flux density, low coercivity, low loss and high mechanical strength.
Abstract:
A communication terminal device which can send data by means of electronic mail or facsimile. The communication terminal device first tries to send the data by electronic mail over a network. In the meantime, the electronic mail address and facsimile number corresponding to a recipient are both stored in a memory. When a predetermined response is not received from the network during a network connection operation, or when there is mail returned in the sender's mailbox, the communication terminal device dials the facsimile number of the recipient and transmits the mail image data via facsimile communication.