Abstract:
Top dead center (TDC) is obtained by counting the number of unit angle signals from a reference angle signal for each cylinder, and combustion conditions of the engine are then detected based on fluctuations in the period of the top dead center. Here the unit angle signals occurring from after the reference angle signal until the TDC following the subsequent reference angle signal are counted, and the count number of the unit angle signals from after the reference angle signal until when the TDC is obtained, is modified based on a difference between the counted number and a reference value.
Abstract:
Apparatus and method for recognizing an absence or presence of a misfire in each of cylinders of a multi-cylinder internal combustion engine without influences of a mechanical deviation in a crank angle sensor and of a combustion state deviation between each of the cylinders. A period of each reference signal (REF) is generated from the crank angle sensor and a fuel combustion state deviation between each of the cylinders. The period of each reference signal (REF), which is generated from the crank angle sensor whenever an engine crankshaft has rotated through a predetermined crank angle expressed as 720.degree./n (n denotes a number of engine cylinders), is measured by a timer. A determination of the absence or presence of the misfire in each cylinder is made based on the measured period of the reference signal for each corresponding one of the cylinders. The measured period being corrected with either or both of first and second correction coefficients (KT.sub.i KKT.sub.i) derived by learning the corresponding first correction coefficient for the mechanical deviation and by learning the corresponding second correction coefficient for the combustion state deviation.
Abstract:
An engine control apparatus includes a control unit configured to perform a feedback control based on a second amount of intake air until a engine speed reaches a target idle speed. The engine control apparatus then regulates the amount of intake air to an amount smaller than a predetermined second amount of intake air for a predetermined period when the engine speed exceeds the target idle speed, and then performs a feedback control based on a first amount of intake air. Such engine control apparatus minimizes variation in engine speed by reducing a convergence time of the engine speed to a target idle speed in switching control of the amount of intake air in a case where engine friction at a low temperature is high.
Abstract:
An object of the present invention is to obtain a control apparatus of an internal combustion engine capable of respectively accurately detecting a combustion change in a plurality of combustion modes. In the present invention, the control apparatus of the internal combustion engine operable upon switching the combustion mode sets a detection time and a detection duration to detect a sensor signal of a crank angle sensor 10 in accordance with the combustion mode, and determines whether or not there is the combustion change based on the sensor signal detected by the crank angle sensor 10 at the detection time and for the detection duration set by the control apparatus.
Abstract:
A fuel injection controlling system includes an accelerator manipulator. An accelerator manipulated variable detection sensor is configured to detect a manipulated variable of the accelerator manipulator. A rotation speed sensor is configured to detect a rotation speed of an engine. A throttle valve drive motor is configured to open and close the throttle valve in response to the manipulated variable. A controller is configured to control the throttle valve drive motor and to compute basic injection time (Ti) of fuel. A memory is configured to memorize, as a carbon adhesion judgment value (IXREF), a throttle opening degree (θTH) at a moment when a rotation speed (Ne) detected with the rotation speed sensor reaches a target idle rotation speed (NeIdle) by increasing the throttle opening degree (θTH). A corrector is configured to correct Ti with IXREF to correct an air-fuel ratio toward a leaner side as IXREF increases.
Abstract:
An control apparatus for a variable valve mechanism, is capable of executing fail safe control in a case in which locking occurs in either one of a cam shaft of a double shaft structure. The control apparatus for a variable valve mechanism has a cam shaft of a double shaft structure including an outer cam shaft and an inner cam shaft, such that it is possible to adjust the phase of a sub cam of inner cam shaft with respect to an main cam of outer cam shaft, and by means these cams, at least one of an intake valve and an exhaust valve of an internal combustion engine is operated. When an abnormality is detected in one of the cam shafts, the control apparatus controls the phase of the cam of the other cam shaft, in accordance with the determined current phase of the cam.
Abstract:
A plurality of reference signals output from a controller which computes an operation amount of an electric actuator is subjected to the logical operation, and the power supply to a drive circuit for the electric actuator is shut off based on an output by the logical operation.
Abstract:
There is provided an idle stop system that can more quickly restart with small noise in conducting idle stop. In preparation for a restart request during an engine inertial rotation, after a motor is rotated in a state where a starter motor is not coupled to the engine, a pinion is engaged with a ring gear during the motor is subjected to inertial rotation like the engine. In this situation, the rotational speed including future pulsation of the engine is estimated with the use of information on the crank angle, and a pinion pushing timing is controlled so that the pinion and the ring gear contact each other with a given rotational speed difference taking a delay time of a pinion pushing unit into consideration.
Abstract:
A fuel injection control system provided with a throttle by wire (TBW) system detecting an operation condition of a throttle grip and controlling, via an actuator, a throttle valve. The control system detects the throttle valve opening and controls an injector. An increased quantity correction value is determined based upon of an output of a throttle valve opening sensor and an operation condition of the throttle grip. When an acceleration condition of a vehicle is detected according to the output of the throttle valve opening sensor, an increased quantity correction of fuel is performed. The increased quantity correction value is brought to an attenuation condition in which the increased quantity correction value is gradually decreased, or a stop condition in which the increased quantity correction value is made to zero, when the throttle grip is not in drive in an opening direction, even though an acceleration condition is detected.
Abstract:
A fuel injection control device includes a basic-injection-use map for deriving a basic injection amount and an additional-injection-use map for deriving an additional injection amount, each corresponding to the throttle opening. During operation of the engine, in each engine cycle, a first calculation stage for calculating the basic injection amount, and a second calculation stage provided after the first calculation stage are set. A first injection amount and a second injection amount obtained by applying the throttle opening measured in the first calculation stage and the second calculation stage, respectively, are compared. When the second injection amount is greater than the first injection amount, an additional injection amount is calculated by subtracting the first injection amount from the second injection amount; and when the first injection amount is greater than the second injection amount, the basic injection amount calculated in the first calculation stage is corrected.