Abstract:
A semiconductor device has a first semiconductor die and a modular interconnect structure adjacent to the first semiconductor die. An encapsulant is deposited over the first semiconductor die and modular interconnect structure as a reconstituted panel. An interconnect structure is formed over the first semiconductor die and modular interconnect structure. An active area of the first semiconductor die remains devoid of the interconnect structure. A second semiconductor die is mounted over the first semiconductor die with an active surface of the second semiconductor die oriented toward an active surface of the first semiconductor die. The reconstituted panel is singulated before or after mounting the second semiconductor die. The first or second semiconductor die includes a microelectromechanical system (MEMS). The second semiconductor die includes an encapsulant and an interconnect structure formed over the second semiconductor die. Alternatively, the second semiconductor die is mounted to an interposer disposed over the interconnect structure.
Abstract:
A semiconductor device has a carrier with a fixed size. A plurality of first semiconductor die is singulated from a first semiconductor wafer. The first semiconductor die are disposed over the carrier. The number of first semiconductor die on the carrier is independent from the size and number of first semiconductor die singulated from the first semiconductor wafer. An encapsulant is deposited over and around the first semiconductor die and carrier to form a reconstituted panel. An interconnect structure is formed over the reconstituted panel while leaving the encapsulant devoid of the interconnect structure. The reconstituted panel is singulated through the encapsulant. The first semiconductor die are removed from the carrier. A second semiconductor die with a size different from the size of the first semiconductor die is disposed over the carrier. The fixed size of the carrier is independent of a size of the second semiconductor die.
Abstract:
A semiconductor device has a semiconductor die and an encapsulant deposited over the semiconductor die. A first insulating layer is formed over a first surface of the encapsulant and an active surface of the semiconductor die. A second insulating layer is formed over a second surface of the encapsulant opposite the first surface. A conductive layer is formed over the first insulating layer. The conductive layer includes a line-pitch or line-spacing of less than 5 μm. The active surface of the semiconductor die is recessed within the encapsulant. A third insulating layer is formed over the semiconductor die including a surface of the third insulating layer coplanar with a surface of the encapsulant. The second insulating layer is formed prior to forming the conductive layer. A trench is formed in the first insulating layer. The conductive layer is formed within the trench.
Abstract:
A semiconductor device has a first conductive layer and a semiconductor die disposed adjacent to the first conductive layer. An encapsulant is deposited over the first conductive layer and semiconductor die. An insulating layer is formed over the encapsulant, semiconductor die, and first conductive layer. A second conductive layer is formed over the insulating layer. A first portion of the first conductive layer is electrically connected to VSS and forms a ground plane. A second portion of the first conductive layer is electrically connected to VDD and forms a power plane. The first conductive layer, insulating layer, and second conductive layer constitute a decoupling capacitor. A microstrip line including a trace of the second conductive layer is formed over the insulating layer and first conductive layer. The first conductive layer is provided on an embedded dummy die, interconnect unit, or modular PCB unit.
Abstract:
A semiconductor device has a substrate with a stiffening layer disposed over the substrate. The substrate has a circular shape or rectangular shape. A plurality of semiconductor die is disposed over a portion of the substrate while leaving an open area of the substrate devoid of the semiconductor die. The open area of the substrate devoid of the semiconductor die includes a central area or interstitial locations among the semiconductor die. The semiconductor die are disposed around a perimeter of the substrate. An encapsulant is deposited over the semiconductor die and substrate. The substrate is removed and an interconnect structure is formed over the semiconductor die. By leaving the predetermined areas of the substrate devoid of semiconductor die, the warping effect of any mismatch between the CTE of the semiconductor die and the CTE of the encapsulant on the reconstituted wafer after removal of the substrate is reduced.
Abstract:
A semiconductor device includes a BGA package including first bumps. A first semiconductor die is mounted to the BGA package between the first bumps. The BGA package and first semiconductor die are mounted to a carrier. A first encapsulant is deposited over the carrier and around the BGA package and first semiconductor die. The carrier is removed to expose the first bumps and first semiconductor die. An interconnect structure is electrically connected to the first bumps and first semiconductor die. The BGA package further includes a substrate and a second semiconductor die mounted, and electrically connected, to the substrate. A second encapsulant is deposited over the second semiconductor die and substrate. The first bumps are formed over the substrate opposite the second semiconductor die. A warpage balance layer is formed over the BGA package.
Abstract:
A front opening unified pod has a housing and a plurality of horizontal support members disposed within the housing and adapted to accommodate a plurality of semiconductor wafers or panels. The plurality of semiconductor wafers or panels have a different size or shape, such as circular and rectangular. A first one of the plurality of horizontal support members has a wing to support the plurality of different size or shape semiconductor wafers or panels. The plurality of horizontal support members has a first side horizontal support member, a second side horizontal support member, and a center horizontal support member disposed between the first side horizontal support member and the second side horizontal support member. The plurality of horizontal support members is insertable into the housing. One or more of the plurality of horizontal support members has an opening for laser identification.
Abstract:
A semiconductor device includes a semiconductor die and an encapsulant deposited over and around the semiconductor die. A semiconductor wafer includes a plurality of semiconductor die and a base semiconductor material. A groove is formed in the base semiconductor material. The semiconductor wafer is singulated through the groove to separate the semiconductor die. The semiconductor die are disposed over a carrier with a distance of 500 micrometers (μm) or less between semiconductor die. The encapsulant covers a sidewall of the semiconductor die. A fan-in interconnect structure is formed over the semiconductor die while the encapsulant remains devoid of the fan-in interconnect structure. A portion of the encapsulant is removed from a non-active surface of the semiconductor die. The device is singulated through the encapsulant while leaving encapsulant disposed covering a sidewall of the semiconductor die. The encapsulant covering the sidewall includes a thickness of 50 μm or less.
Abstract:
An integrated circuit packaging system and method of manufacture thereof includes: a substrate with internal circuitry between a substrate top side, a substrate bottom side, and vertical sides; an integrated circuit coupled to the internal circuitry; a molded package body formed directly on the integrated circuit and the substrate top side of the substrate; and a conductive conformal shield structure applied directly on the molded package body, the vertical sides, and to extend below the substrate bottom side coupled to the internal circuitry.
Abstract:
A semiconductor device has a semiconductor package and an interposer disposed over the semiconductor package. The semiconductor package has a first semiconductor die and a modular interconnect unit disposed in a peripheral region around the first semiconductor die. A second semiconductor die is disposed over the interposer opposite the semiconductor package. An interconnect structure is formed between the interposer and the modular interconnect unit. The interconnect structure is a conductive pillar or stud bump. The modular interconnect unit has a core substrate and a plurality of vertical interconnects formed through the core substrate. A build-up interconnect structure is formed over the first semiconductor die and modular interconnect unit. The vertical interconnects of the modular interconnect unit are exposed by laser direct ablation. An underfill is deposited between the interposer and semiconductor package. A total thickness of the semiconductor package and build-up interconnect structure is less than 0.4 millimeters.