Abstract:
A method for converting Microsoft® PowerPoint® (PPT) presentation files into compressed image files is provided. The method includes reading and parsing a PPT presentation file to identify each presentation slide and each presentation object in each presentation slide. The attributes of each presentation object are examined to determine whether effects are applied, and to identify animated GIF objects. The method provides for capturing the end-point effect applied to any presentation object and rendering the presentation object in as many compressed image files as necessary to capture the end-point effect. Additionally, each image of an animated GIF object is analyzed to determine the most complex image to render in a compressed image file.
Abstract:
The subject invention relates to a method of mitigating the effects of spurious background signals in spectroscopic measurement systems. The design of a broadband imagining spectrometer is disclosed that enables direct measurement of the spurious optical background intensity during spectroscopic measurements of a sample. The background is measured on a two dimensional surface coincident with the spectrometer exit plane. The background contribution is used to correct the measurements improving the accuracy of the spectroscopic intensity measurement.
Abstract:
A computer (host), which is communicating with an interactive whiteboard projector (client) through a remote desktop connection, launches third-party applications supporting multiple mice (i.e. drawing pens) and provides these applications with virtual mouse device and input event signals for each pen device connected on the projector. The applications will behave as if the host system were configured with multiple installed mice, though no added driver or physical connected hardware is present.
Abstract:
A system for establishing a remote desktop connection between a client projector and a host computer, the client projector and the host computer being connected by a network. A private remote desktop service virtual channel is established between the host computer and the client projector. In the client projector, a processor initiates a remote desktop connection process, and completes a remote desktop connection to the host computer. The client projector receives keyboard and mouse events from the host computer across the private remote desktop service virtual channel. The keyboard or mouse events received by the client projector are injected into an operating system of the client projector. They are interpreted by a client application remote desktop connection as a valid input device event, and forwarded to the host computer to actuate a graphical user interface of a remote desktop session.
Abstract:
Methods having corresponding apparatus and tangible computer-readable media comprise: capturing a first image of ambient light upon a surface; generating a first grayscale image based on a selected color channel of the first image; projecting a primary color of light upon the surface; capturing a second image of the primary color of light projected upon the surface; generating a second grayscale image based on the selected color channel of the second image; generating a difference image, comprising subtracting the first grayscale image from the second grayscale image; and generating a projector mask, comprising detecting edges of a shape in the difference image, and reproducing the shape based upon the edges of the shape.
Abstract:
A multi projector imaging system is provided. The system includes a plurality of projectors and a computing device in communication with the plurality of projectors. The computing device includes a projector platform module providing output to the plurality of projectors such that the plurality of projectors display partially overlapping output as a cohesive display. The projector platform module includes a projection player module having media drawers for preparing frames of data that are drawn into a frame buffer for eventual display through the plurality of projectors. The projection platform also includes a remote desktop controller. The remote desktop controller manages remote computing devices communicating with the projector platform, wherein the remote desktop controller specifies a resolution and aspect ratio for image data provided by the remote computing devices, and wherein the provided image data is stored in the frame buffer. A method for displaying content through the multi-projector system is also included.
Abstract:
Computer-readable media, having corresponding methods and apparatus, embodies instructions executable by a first computer to perform a method comprising: executing a first videoconference client application, wherein the first videoconference client application exchanges first audiovisual data with a videoconference server application during a videoconference; sending action commands to a second videoconference client application executing on a second computer, wherein the second videoconference client application exchanges second audiovisual data with the videoconference server application during the videoconference; and wherein the second videoconference client application operates according to the action commands during the videoconference.
Abstract:
Methods having corresponding apparatus and computer-readable media comprise: capturing an image of a shape projected upon a display surface; and determining a first rectangle that is the largest inscribed rectangle for the shape, comprising generating a rectangular bounding box containing the shape, dividing the rectangular bounding box vertically into first and second sections, determining a second rectangle that is the largest inscribed rectangle for the shape in the first section of the bounding box, determining a third rectangle that is the largest inscribed rectangle for the shape in the second section of the bounding box, dividing the rectangular bounding box horizontally into third and fourth sections, determining a fourth rectangle that is the largest inscribed rectangle for the shape in a third section of the bounding box, and determining a fifth rectangle that is the largest inscribed rectangle for the shape in the fourth section of the bounding box.
Abstract:
A multi projector imaging system is provided. The system includes a plurality of projectors and a computing device in communication with the plurality of projectors. The computing device includes a projector platform module providing output to the plurality of projectors such that the plurality of projectors display partially overlapping output as a cohesive display. The projector platform module includes a projection player module having media drawers for preparing frames of data that are drawn into a frame buffer for eventual display through the plurality of projectors. The projection platform also includes a remote desktop controller. The remote desktop controller manages remote computing devices communicating with the projector platform, wherein the remote desktop controller specifies a resolution and aspect ratio for image data provided by the remote computing devices, and wherein the provided image data is stored in the frame buffer. A method for displaying content through the multi-projector system is also included.