Abstract:
A method for fabricating a semiconductor layout includes providing a first layout having a plurality of line patterns and a second layout having a plurality of connection patterns, defining at least a first to-be-split pattern overlapping with the connection pattern among the line patterns, splitting the first to-be-split pattern at where the first to-be-split pattern overlapping with the connection pattern, decomposing the first layout to form a third layout and a fourth layout, and outputting the third layout and the further layout to a first mask and a second mask respectively.
Abstract:
The invention provides a layout pattern of static random access memory (SRAM), which at least comprises a plurality of gate structures located on a substrate and spanning the plurality of fin structures to form a plurality of transistors distributed on the substrate, wherein the plurality of transistors comprise two pull-up transistors (PU), two pull-down transistors (PD) to form a latch circuit, and two access transistors (PG) connected to the latch circuit. In each SRAM memory cell, the fin structure included in the pull-up transistor (PU) is defined as a PU fin structure, the fin structure included in the pull-down transistor (PD) is defined as a PD fin structure, and the fin structure included in the access transistor (PG) is defined as a PG fin structure, wherein a width of the PD fin structure is wider than a width of the PG fin structure.
Abstract:
A layout pattern of a magnetoresistive random access memory (MRAM) includes a substrate having a first cell region and a second cell region and a diffusion region on the substrate extending through the first cell region and the second cell region. Preferably, the diffusion region includes a first H-shape and a second H-shape according to a top view.
Abstract:
The invention provides a layout pattern of static random access memory (SRAM), which at least comprises a plurality of gate structures located on a substrate and spanning the plurality of fin structures to form a plurality of transistors distributed on the substrate, wherein the plurality of transistors comprise two pull-up transistors (PU), two pull-down transistors (PD) to form a latch circuit, and two access transistors (PG) connected to the latch circuit. In each SRAM memory cell, the fin structure included in the pull-up transistor (PU) is defined as a PU fin structure, the fin structure included in the pull-down transistor (PD) is defined as a PD fin structure, and the fin structure included in the access transistor (PG) is defined as a PG fin structure, wherein a width of the PD fin structure is wider than a width of the PG fin structure.
Abstract:
A layout pattern of a magnetoresistive random access memory (MRAM) includes a substrate having a first cell region, a second cell region, a third cell region, and a fourth cell region and a diffusion region on the substrate extending through the first cell region, the second cell region, the third cell region, and the fourth cell region. Preferably, the diffusion region includes a H-shape according to a top view.
Abstract:
The invention provides a semiconductor layout pattern, the semiconductor layout pattern includes a substrate, a plurality of ternary content addressable memories (TCAM) are arranged on the substrate, the layout of at least two TCAM is mirror symmetric with each other along an axis of symmetry, and the two TCAM are connected to the same search line (SL) together.
Abstract:
A layout pattern of a two-port ternary content addressable memory (TCAM) includes a first storage unit, a second storage unit, a first comparison circuit and a second comparison circuit. The first comparison circuit and the second comparison circuit are positioned in a first side area of a side and a second side area of another side of the layout pattern, respectively. The first storage unit and the second storage unit are positioned in a first middle area and a second middle area between the first side area and the second side area, respectively. The first storage unit is connected to the first comparison circuit through a first gate structure and connected to the second comparison circuit through a second gate structure. The second storage unit is connected to the first comparison circuit through a third gate structure and connected to the second comparison circuit through a fourth gate structure.
Abstract:
A memory includes (n−1) non-volatile cells, (n−1) bit lines and a current driving circuit. Each of the (n−1) non-volatile cells includes a first terminal and a second terminal. An ith bit line of the (n−1) bit lines is coupled to a first terminal of an ith non-volatile cell of the (n−1) non-volatile cells. The current driving circuit includes n first transistors coupled to the (n−1) non-volatile cells.
Abstract:
A layout pattern of a static random access memory (SRAM) includes a substrate, a first pull-up transistor (PL1), a first pull-down transistor (PD1), a second (PL2), and a second pull-down transistor (PD2) on the substrate, and a first pass gate transistor (PG1A), a second pass gate transistor (PG1B), a third pass gate transistor (PG2A) and a fourth pass gate transistor (PG2B), wherein the PG1A and the PG1B comprise a first fin structure, the PG2A and the PG2B comprise a second fin structure, a first local interconnection layer disposed between the PG1A and the PG1B and disposed on the fin structures of the PL1 and the PD1, a second local interconnection layer disposed between the PG2A and the PG2B and disposed between the fin structures of the PL2 and the PD2, the first local interconnection layer and the second local interconnection layer are monolithically formed structures respectively.
Abstract:
The present invention provides a memory device, the memory device includes a first region having a plurality of oxide semiconductor static random access memories (OSSRAM) arranged in a first direction, and each of the OSSRAMs comprising a static random access memory (SRAM) and at least an oxide semiconductor dynamic random access memory (DOSRAM), wherein the DOSRAM is connected to the SRAM, wherein each of the DOSRAMs comprises an oxide semiconductor gate (OSG), and each of the OSGs extending in a second direction perpendicular to the first direction, and an oxide semiconductor channel extending in the first direction, an oxide semiconductor gate connection extending in the first direction to connect each of the OSGs, and a word line, a Vcc connection line and a Vss connection line extend in the first direction and are connected to the SRAMs in each OSSRAM.