Abstract:
A phase change ink composition is provided comprising a UV-curable component, a crystalline component, and an amorphous component, wherein the addition of a UV-curable component imparts improved robustness over the ink that contains only crystalline and amorphous materials.
Abstract:
A solid ink composition comprising an amorphous component, a crystalline material, and optionally, a colorant, which are suitable for ink jet printing, including printing on coated paper substrates, and methods for making the same. In embodiments, the crystalline and amorphous components are synthesized from an esterification reaction of tartaric acid with an alcohol.
Abstract:
An emulsified UV curable ink comprising water, an amide gellant, a curable monomer, a photoinitiator; which is suitable for use in an indirect printing method.
Abstract:
The present disclosure provides an ink comprising a latex comprising a photoinitiator and at least one unsaturated polyester, which is suitable for use in an indirect printing method.
Abstract:
The present disclosure provides a photocurable ink comprising a radiation curable material selected from the group consisting of a curable monomer, a curable oligomer, and mixtures thereof; a photoinitiator; and a surfactant, which is suitable for use in an indirect printing method. The present disclosure also provides a method of printing using a photocurable ink.
Abstract:
A phase change ink composition suitable for ink jet printing, including robust printing on coated paper substrates. In embodiments, the phase change ink composition comprises both a crystalline compound and an amorphous compound which are derived from bio-renewable materials. In particular, the present embodiments provide novel crystalline compounds with at least two aromatic moieties for use in the phase change inks.
Abstract:
An amorphous amide compound of the formula wherein R is selected from the group consisting of an alkyl group, an aryl group, an alkylaryl group, an arylalkyl group, and combinations thereof. An amorphous diamide compound of the formula wherein R1 is selected from the group consisting of an alkylene group, an arylene group, an alkylarylene group, an arylalkylene group, and combinations thereof.
Abstract:
Novel crystalline compounds with at least two aromatic moieties for use in the phase change inks. The crystalline compound is derived from bio-renewable materials and can be used in phase change ink compositions to impart desirable ink properties. For example, the crystalline compounds provide phase change ink compositions suitable for ink jet printing, including robust printing on coated paper substrates.
Abstract:
The disclosure provides a diurethane gelator having the structure of Formula I. wherein R1 and R1′ each, independently of the other, is a C1-C22 saturated aliphatic hydrocarbon group selected from the group consisting of (1) linear aliphatic groups, (2) branched aliphatic groups, (3) cyclic aliphatic groups, (4) aliphatic groups containing both cyclic and acyclic portions, any carbon atom of the saturated aliphatic hydrocarbon group may be optionally substituted with an alkyl group (cyclic or acyclic), wherein (1) and (2) groups have a carbon number of from about 1 to about 22 carbons, and wherein (3) and (4) groups have a carbon number of from about 4 to about 10 carbons; and X is selected from the group consisting of: (i) an alkylene group, (ii) an arylene group, (iii) an arylalkylene group, and (iv) an alkylarylene group.
Abstract:
The disclosure provides curable inks including a bis-urea gelator having the structure of Formula I. wherein R and R′ each, independently of the other, is a saturated aliphatic hydrocarbon group selected from the group consisting of (1) linear aliphatic groups, (2) branched aliphatic groups, (3) cyclic aliphatic groups, (4) aliphatic groups containing both cyclic and acyclic portions, any carbon atom of the saturated aliphatic hydrocarbon group may be optionally substituted with an alkyl group (cyclic or acyclic), wherein (1) and (2) groups have a carbon number of from about 1 to about 22 carbons, and wherein (3) and (4) groups have a carbon number of from about 4 to about 10 carbons; and X is selected from the group consisting of: (i) an alkylene group, (ii) an arylene group, (iii) an arylalkylene group, and (iv) an alkylarylene group.