Abstract:
A 3D scanner for recording topographic characteristics of a surface of at least part of a body orifice, where the 3D scanner includes a main body having a mounting portion; a tip which can be mounted onto and un-mounted from the mounting portion, where the tip is configured for being brought into proximity of the body orifice surface when recording the topographic characteristics such that at least one optical element of the tip is at least partly exposed to the environment in the body orifice during the recording; and a heater for heating the optical element, where the heat is provided by way of thermal conduction; where the tip can be sterilized in a steam autoclave when un-mounted from the main body of the 3D scanner such that it subsequently can be reused.
Abstract:
Presented is an optical coherence tomography system and method to increase imaging depth of optical coherence tomography (OCT) by selective amplification. In a swept-source OCT system with periodically linear wavenumber-vs-time characteristic, the signal in principle is summation of various sinusoidal signals with different frequencies. Each frequency component of the recorded signal carries reflectivity information for a certain depth of the analyzed object. At greater depth inside the analyzed object, the reflectivity information is generally weak due absorption and scattering. An analog or digital electronic circuit selectively filters and amplifies frequencies above some threshold, possibly up to another threshold. In this way, even small signals for relatively larger depths become detectable.
Abstract:
Tools in a system for the design of customized three-dimensional models of dental restorations for subsequent manufacturing. Dental restorations such as implant abutments, copings, crowns, wax-ups, bridge frameworks. Moreover, a computer-readable medium for implementing such a system on a computer. A system for designing at least one dental restoration, said system including: a display, means for acquiring and displaying a three dimensional dental restoration model of the dental restoration, and means for displaying a plurality of control points, each of the control points corresponding to a respective location on the dental restoration model, and each of said control points enabling manual customization of the dental restoration model.
Abstract:
A 3D scanner for recording topographic characteristics of a surface of at least part of a body orifice, where the 3D scanner includes a main body having a mounting portion; a tip which can be mounted onto and un-mounted from the mounting portion, where the tip is configured for being brought into proximity of the body orifice surface when recording the topographic characteristics such that at least one optical element of the tip is at least partly exposed to the environment in the body orifice during the recording; and a heater for heating the optical element, where the heat is provided by way of thermal conduction; where the tip can be sterilized in a steam autoclave when un-mounted from the main body of the 3D scanner such that it subsequently can be reused.
Abstract:
Disclosed is a method for modeling a digital design of a denture for a patient, said denture comprising a gingival part and a teeth part comprising a set of denture teeth, where the method comprises: obtaining a digital 3D representation of the patient's gum; obtaining virtual teeth models corresponding to the denture teeth; virtually arranging the virtual teeth models in relation to the digital 3D representation of the patient's gum; and generating a virtual outer gingival surface of the gingival part of the denture
Abstract:
A method of virtually designing a post and core restoration for attachment in a damaged tooth of a patient, where the tooth includes a bore for receiving the post of the post and core, the method includes obtaining a first 3D scan includes at least a part of the damaged tooth; providing a digital 3D shape adapted to fit the bore of the damaged tooth; virtually matching the first 3D scan of the tooth and the digital 3D shape, where the matching includes matching a surface region in the first 3D scan of the tooth with a corresponding surface region of the digital 3D shape, such that at least part digital 3D shape is represented relative to the first 3D scan of the tooth; and virtually designing the post and core restoration based on the representation of the digital 3D shape relative to the first 3D scan of the tooth.
Abstract:
Disclosed is a computer-implemented method of designing a number of dental restorations for a patient, wherein the method includes:—selecting a composed set of teeth including a number of teeth, where the number of teeth are arranged spatially relative to each other forming a high aesthetic composition;—applying the composed set of teeth to a virtual three dimensional representation of the patient's present oral situation to obtain an initial set of teeth;—optionally modifying one or more parameters of one or more of the teeth in the initial set of teeth to obtain a finalized set of teeth.
Abstract:
A computer-implemented method of generating a virtual model of a set of teeth for manufacturing a physical model of the set of teeth includes providing a virtual model of the set of teeth generating a cavity in said gingival part, into which cavity a removable component fits, where the removable component and the cavity are configured to provide a gap at an interface; and providing for supporting and positioning the removable component in the cavity, wherein the area of contact between the removable component and the cavity wall at the interface is controlled by the shape of the adjoining surfaces of the supporting and positioning and the other of the removable component and the cavity wall.
Abstract:
Disclosed is a computer-implemented method of arranging three-dimensional virtual designs configured to be manufactured as physical designs on a production batch, the method including: providing the virtual designs, where each virtual design is based on a three-dimensional representation of an object, and where at least a number of the virtual designs belongs to a group, where the virtual designs in a respective group satisfy at least one common criterion; and arranging the virtual designs relative to the production batch.
Abstract:
Disclosed is a method for planning, visualizing, and/or optimizing dental restoration on at least a part of the pre-prepared teeth of a patient, wherein said method comprises the steps of: providing at least one 3D digital model of at least a part of the pre-prepared teeth; designing at least one dental restoration CAD model based on the 3D digital model of at least a part of the pre-prepared teeth; providing at least one 3D digital model of at least a part of the prepared teeth, where the prepared teeth are provided by preparing the pre-prepared teeth by dental restorative work, at least partly based on the dental restoration CAD model; and aligning the 3D models of the pre-prepared and the prepared teeth.