Abstract:
A method for laminating a magnetic core of a three-phase current transformer uses a continuous length of magnetic metal material and a mandrel having first, second, third, and fourth sets of pins mounted to a mandrel plate. The second and third pin sets are located adjacent one another, adjacent the respective first and fourth pin sets, and between the first and fourth pin sets. The third and fourth pin sets are movable between a retracted position within the mandrel plate and an extended position extending from the mandrel plate. The third and fourth pin sets are first positioned in the retracted position, and a first portion of the length of magnetic material is wound about the first and second pin sets to form the first phase section of the magnetic core. After moving the third pin set to the extended position, a second portion of the length of magnetic material is wound about the first and third pin sets to form the second phase section. After moving the fourth pin set to the extended position, a third portion of the length of magnetic material is wound about the first and fourth pin sets to form the third phase section, thereby forming the magnetic core. In another lamination method, each phase section is separately formed by continuously winding a respective length of magnetic metal material about a respective rotating mandrel. The magnetic core is formed by connecting the separately laminated phase sections.
Abstract:
The present invention provides a low burden visual POWER ON indicator for a self-powered electrical circuit protection device. The visual indicator includes a current transformer for producing an induced current in direct proportion to the current supplied to an electrical device protected by the protection device. The induced current is summed and rectified. An energy accumulator stores a predetermined voltage required to operate the protection device. The stored voltage is controlled by an accumulation switch which in turn is controlled by a hysteresis control circuit. The hysteresis control circuit includes an operational amplifier which is biased by a stable reference voltage. When the voltage on the energy accumulator is equal to the stable reference voltage the operational amplifier produces a HIGH output signal. When the voltage on the energy accumulator is less than the stable reference voltage the operational amplifier produces a LOW output signal. A HIGH output signal causes the power accumulation switch to close thereby diverting current away from the energy accumulator. A LOW output signal opens the power accumulation switch causing current to flow to the energy accumulator thereby charging it. An LED is electrically connected to the operational amplifier such that it is illuminated only when the operational amplifier produces a HIGH output signal and thereby provides a visual indication of the POWER ON state of the protection device.
Abstract:
An arc stack for receiving a circuit breaker blade moveable between a closed position and an open position, includes a plurality of arc plates positioned substantially parallel to one another and arranged in a plurality of adjacent groups. Each of the groups includes one or more arc plates having substantially similar respective arc throats formed therein. The respective arc throats progressively decrease in size from group to group along the length of the arc stack in a direction extending away from the closed position of the blade. A connecting support maintains the plurality of arc plates substantially parallel to one another.
Abstract:
A circuit for detecting phase imbalance in a three phase electrical system. The circuit includes a three phase current transformer or three separate current transformers for monitoring the current flowing in each phase of a three phase electrical system. The current transformers provide an induced current proportional to the monitored current. The induced current passes through a full-wave bridge rectifier which produces a voltage output proportional to the induced current. This voltage signal is passed to a two pole Sallen-Key filter which allows a desired signal having a particular frequency range to pass through and blocks the passage of an undesired signal having a particular frequency range. A scaling circuit then receives a portion of the desired signal and produces a scaled average signal which is of a preselected magnitude lower than the desired signal. The scaled average signal and a portion of the desired signal are passed to a comparator/timer which produces an output signal based on a comparison of the desired signal and the scaled average signal. The output signal from the comparator/timer is only produced when the desired signal is lower in value than the scaled average signal and when the timer has determined that the signal is true. When it is determined that the output signal is true, it is sent to an electromechanical trip device which initiates a trip signal to an electrical contactor, thereby interrupting the three phase system.
Abstract:
The present invention provides a distribution system for audio and video services from a centralized source using lightwave signals generated from terminal equipment through an optical carrier to multiple locations in a facility. The terminal equipment reversibly convert audio, video, and control signals from electrical into lightwave signals. The terminal equipment also provide for electrical output at the remote locations with the appropriate format for various audio and video speakers and displays. A controller selects and converts audio communication signal into a standard audio format and directs the signal to the desired remote location in response to the control signal.
Abstract:
Firmware is downloaded to a metering unit located in a distributed power network carrying a power-related waveform, where the metering unit senses power-related parameters associated with the power-related waveform and generates and transmits data representative thereof. The metering unit is provided with a sector-erasable flash EEPROM having a first section for storing main functionality firmware and a second section for storing boot code. The boot code includes a reset portion for resetting the metering unit and a firmware update section for downloading external firmware to the first section. The firmware update section includes a writing routine for writing the external firmware to the first section. The metering unit is also provided with a volatile RAM. The external firmware is downloaded to the first section of the EEPROM by executing the firmware update section. While executing the firmware update section, the writing routine is copied to the RAM and executed therefrom to write the external firmware to the first section of the EEPROM.
Abstract:
An energy management loadpanel arrangement includes a loadpanel enclosure having a plurality of circuit breakers, each of which opens and closes in response to a control signal so as to interrupt an associated current path. A microcomputer generates the control signals to control the position of the circuit breakers and their associated current paths. The circuit breakers include a digital code circuit which is manually set to indicate the type of circuit breaker, for example, a one, two or three pole circuit breaker.
Abstract:
A closed loop pulse width modulator (PWM) inverter corrects for variations and distortion in the output AC voltage waveform caused by non-linearities of the switching devices or changes in the DC link voltage. A signal is generated that is a volt-seconds representation of the voltage error between a voltage command and the actual AC output voltage of the PWM inverter. The volt-seconds error signal becomes a controlling means in the closed loop of the PWM inverter to regulate the output AC voltage of the PWM inverter. Another signal that represents changes in the DC link voltage also modifies the voltage command signal. The system will compensate for the non-linear behavior of the PWM inverter due to deadtime, minimum on-times and off-times, and DC link voltage variations and voltage drops across the switching devices, and will also allow the operation of the inverter in a linear fashion for the region of operation when one or more of its phases are saturated, i.e., either full on or full off.
Abstract:
A line isolation monitor (LIM) indicates the maximum hazard current of an ungrounded polyphase power distribution system. The LIM is microcontroller based and continuously monitors a fault impedance of the distribution system. The fault impedance is determined by the LIM by injecting a continuous sine wave measurement current into a ground terminal to generate a measurement voltage across the fault impedance. Using the measurement voltage and current, the LIM calculates the fault impedance and, using this impedance, calculates the hazard current based on the maximum line to ground voltage of the ungrounded system. The hazard current is displayed and if it exceeds a predetermined threshold, the LIM will provide audio and visual alarms. A serial communications channel allows the LIM to communicate with other intelligent devices. The LIM has means for self-calibration and self-testing while on-line and during a power-up sequence. Line frequency is also determined by the LIM. Two LIMs can be used to monitor the same distribution system at the same time without interfering with each other.