Abstract:
A source follower includes a first transistor, a first output module, a second transistor, a second output module and a feedback module. The first terminal and the control terminal of the first transistor are configured to respectively receive a first base voltage and a first control voltage. The second terminal of the first transistor and the first output module are electrically connected to a first output terminal. The first terminal and the control terminal of the second transistor are configured to respectively receive a first base voltage and a second control voltage. The second terminal of the second transistor and the second output module are electrically connected to a second output terminal. The feedback module is electrically connected to the control terminal of the first transistor, the control terminal of the second transistor and a reference node of the second output module.
Abstract:
A programmable gain amplifier includes an active load module, a first differential pair, a second differential pair and a power source module. The first and second differential pairs are electrically connected to the active load module. The power source module is electrically connected to the first current source end of the first differential pair and the second current source end of the second differential pair. The power source module supplies a first current to the first differential pair through the first current source end. The power source module supplies a second current to the second differential pair through the second current source end. The power source module adjusts the potential of the first current, the potential of the second current, or both.
Abstract:
A dual-mode touch sensing method adapted for a stylus and a touch panel comprising N first signal lines and M second signal lines. The method comprises: sequentially controlling the N first signal lines to emit N corresponding pulse signals in N gesture periods in a scanning period, receiving M gesture feedback signals corresponding to the pulse signals via the M second signal lines in each among the N gesture periods, selectively generating a gesture signal based on the gesture feedback signals, determining a stylus period other than the N gesture periods in the scanning period by the stylus, generating a stylus signal in the stylus period by the stylus, and receiving the stylus signal and generating a stylus touching signal accordingly by the touch panel.
Abstract:
An image compensation device is disclosed. The image compensation image compensation device comprises a 3D band pass filter, a 3D notch filter, a 3D notch mixing unit, a 3D summing unit, a non-3D notch filter, a non-3D band pass filter, a non-3D notch mixing unit, a non-3D band pass mixing unit, and a non-3D summing unit. The 3D notch mixing unit is used for compensating an output of the 3D notch filter. The non-3D notch mixing unit is used for compensating an output of the non-3D notch filter. The non-3D band pass mixing unit is used for compensating an output of the non-3D band pass filter. The image compensation device of the present invention is capable of avoiding the unstable and sparkle-like situation in the prior arts.
Abstract:
A method of reducing computation of water tolerance by projecting touch data is disclosed, targeting the handheld devices. The method targets first at obtaining a difference array, followed by extracting minimum values of rows and columns of the difference array to obtain a row projection list and a column projection list respectively. By repeated implementing of mutual capacitance detection, ghost water blocks can be wiped out from the multiple water blocks. Once integrating with a local spatial boundary detection algorithm, the sensed signals of intended input located within a rectangular water block yet beyond a real water block are consequently detected. The computational algorithm of the water tolerance of this invention is successfully built into the touch panel controller due to its substantially reduced computation.
Abstract:
A method for calculating a touch coordinate on a touch panel is provided, the touch panel having a plurality of points, said method comprising: determining a group of candidate points when a touch occurs on the touch panel, each candidate point having one sensing value; assigning weights to the sensing values of the respective candidate points to obtain weighted sensing values; and calculating a coordinate by utilizing the weighted sensing values and positions of the respective candidate points. By using said method, the calculation result of the touch coordinate will be more stable.
Abstract:
A ghost cancellation method for the multi-touch sensitive device is disclosed. The multi-touch sensitive device includes a sensing array having multiple lines of a first axis and multiple lines of a second axis intersecting with each other. All the lines of the sensing array are scanned to determine which ones of the lines are touched, so as to determine touch point candidates. For each touch point candidate, a driving signal is applied to the line of the first axis, and the line of the second axis is detected to check if the touch point candidate is actually touched.
Abstract:
A touch panel device includes a touch panel and two or more controllers. The touch panel includes four regions. Each region includes a plurality of driving conductors extended along a first direction, and a plurality of sensing conductors extended along a second direction perpendicular to the first direction. Each controller is in charge of one of the region. Since the length of each driving conductor and each sensing conductors is one half of that of the conventional driving conductor and sensing conductor, each controller controls one fourth of the area of the touch panel, and is responsible for one fourth of the capacitance of the touch panel. The touch panel device can be well controlled by the controller without using a single controller with higher detecting sensibility and cost.
Abstract:
A touch position detecting method for a touch screen is disclosed. In the method, a specific point is detected by comparing a sensed data thereof with a first threshold and by comparing a sum of sensed values of a group of points which include the specific point with a second threshold. Furthermore, the sensed value of the specific point is checked to see if it is the maximum among the group of points. By using such a method, accuracy of touch position detection can be improved.
Abstract:
A hierarchical sensing method for a touch panel is disclosed. The touch panel has a matrix of points for detecting a touch or touches. The method includes dividing the points into a plurality of blocks; sensing first data from the respective blocks; determining which one or ones of the blocks are touched blocks according to the first data; sensing second data from each point of the touched blocks; and determining which one or ones of the points are touched points according to the second data. By using the method of the present invention, fast sensing speed and high sensing accuracy can be both achieved.