Abstract:
Sub-performing elements of an ultrasound transducer array are detected. The power, such as current, used by or provided to the transmit driver is measured. By driving each element or group of elements separately, defective elements or groups of elements are detected from the amount of power used.
Abstract:
An ultrasonic measuring apparatus includes an ultrasonic transducer device having a substrate and an ultrasonic transducer element array that has a first channel group and a second channel group that are arranged on the substrate, a first integrated circuit apparatus that is mounted on the substrate, at one edge portion of the ultrasonic transducer element array in a first direction, such that a long-side direction coincides with a second direction that intersects the first direction, and performs at least one of signal transmission to the first channel group and signal reception from the first channel group, and a second integrated circuit apparatus that is mounted on the substrate, at the other edge portion of the ultrasonic transducer element array in the first direction, such that the long-side direction coincides with the second direction, and performs at least one of signal transmission to the second channel group and signal reception from the second channel group. In the ultrasonic transducer element array, the first group of channels and the second group of channels are arranged alternately every channel in the second direction.
Abstract:
A bias voltage generating apparatus is placed outside an ultrasound observation apparatus and used together with the ultrasound observation apparatus, the ultrasound observation apparatus incorporating a transmission circuit generating a transmission signal and a reception circuit performing processing on a received signal, for transmitting/receiving ultrasound to/from a subject using a capacitive transducer. The bias voltage generating apparatus includes a power supply circuit for bias voltage which includes a chargeable secondary battery for producing a bias voltage to be applied to the capacitive transducer and produces the bias voltage, a bias voltage superimposing portion which superimposes the bias voltage on the transmission signal outputted to outside the ultrasound observation apparatus, a charging level detecting portion which detects a charging level of the secondary battery, and a variable gain amplifier which increases a gain for the received signal based on the detected charging level.
Abstract:
An ultrasound diagnostic apparatus includes: an ultrasound probe including a capacitive micromachined ultrasound transducer; an ultrasound observation apparatus, and a reception circuit; a transmission ultrasound transducer and a reception ultrasound transducer included in the capacitive micromachined ultrasound transducer, the transmission ultrasound transducer including a plurality of transmission capacitive cells, and the reception ultrasound transducer including a plurality of reception capacitive cells; a transmission signal cable connecting the transmission ultrasound transducer and the transmission circuit; a reception signal cable connecting the reception ultrasound transducer and the reception circuit; a first matching section and a second matching section that perform electrical impedance matching for the ultrasound transmission signal and the ultrasound reception signal, the first matching section and the second matching section being provided for a predetermined transmission region and a predetermined reception region for generating an ultrasound beam for one pixel, respectively.
Abstract:
An ultrasound diagnostic apparatus includes: an ultrasound probe including a capacitive micromachined ultrasound transducer; an ultrasound observation apparatus, and a reception circuit; a transmission ultrasound transducer and a reception ultrasound transducer included in the capacitive micromachined ultrasound transducer, the transmission ultrasound transducer including a plurality of transmission capacitive cells, and the reception ultrasound transducer including a plurality of reception capacitive cells; a transmission signal cable connecting the transmission ultrasound transducer and the transmission circuit; a reception signal cable connecting the reception ultrasound transducer and the reception circuit; a first matching section and a second matching section that perform electrical impedance matching for the ultrasound transmission signal and the ultrasound reception signal, the first matching section and the second matching section being provided for a predetermined transmission region and a predetermined reception region for generating an ultrasound beam for one pixel, respectively.
Abstract:
A projector having an ultrasonic speaker including an ultrasonic transducer for emitting an ultrasonic wave signal to a screen; a distance measuring device for measuring a distance between the ultrasonic transducer and the screen; and an ultrasonic frequency control device for controlling a frequency of the ultrasonic wave signal based on a measured result of the distance measuring device and a sound pressure of the ultrasonic wave signal emitted by the ultrasonic transducer, so that the ultrasonic wave signal has a predetermined sound pressure at or in a vicinity of the screen. The projector may include a storage device for storing a propagation loss characteristic in air of the ultrasonic wave signal emitted from the ultrasonic transducer. The ultrasonic frequency control device controls the frequency of the ultrasonic wave signal by referring to the propagation loss characteristic of the ultrasonic wave signal stored in the storage device.
Abstract:
A polarizing DC voltage is generated at the capacitance of an ultrasonic transducer and then short circuited by a parallelly arranged electronic switch controlled by the command signal frequency to be radiated. A direct current stored in an inductance during the shorting phase is supplied by way of a decoupling diode to the electrodes to the electrostatic transducer upon opening of the switch thereby generating a polarizing DC voltage for the transducer which is regenerated periodically. For achieving additional energy recuperation, a booster capacitor is disposed in series with the inductance and a booster diode is connected in parallel with the booster capacitor and a portion of the inductance.
Abstract:
A capacitive micro-machined ultrasonic transducer, CMUT, device in which integrated probe circuitry includes both the ultrasound transmission and reception circuitry and a DC-DC converter for generating a bias voltage for the CMUT cell. The high voltage pulses of a pulser circuit and a high voltage DC bias voltage are both generated by a single probe circuit, which is local to the CMUT cell.
Abstract:
An ultrasound imaging system has an array of ultrasound transducers comprising a set of sub-arrays of transducers. Each transducer (100) has an analogue buffer (106). Each sub-array of transducers has a signal path (102, 104) from within the array of ultrasound transducers to outside the array of ultrasound transducers which comprises one or more hops between the buffers (106). To reduce the signal line length from inside the array of ultrasound transducers to the periphery, at least some multiple hops between buffers (106) are provided. Each buffer hop introduces a delay, but prevents signal degradation so that a large number of analog signals can be transmitted across the large area ASIC of the transducer array.