Abstract:
Disclosed herein is an apparatus and method for the production of ozone gas comprising: a parallel resonance circuit formed by a high voltage transformer and a companion flexible polymeric corona discharge chamber which encloses an electrode and serves as both a passageway and reservoir for oxygen bearing gas, and a fluid counter-electrode, all contained within an appropriate enclosure. Said corona discharge chamber possesses an electrical reactance which can be varied in order to match the electrical reactance of a companion high voltage transformer so that the components resonate, thereby maximizing the transfer of energy to the corona discharge gap. The dwell of corona discharge is further enhanced by an electrostatic potential incorporated across said tube wall (electret effect). Heat formed in said discharge gap (detrimental to ozone production) is advantageously transferred to said fluid counter-electrode which also serves as an electrolytic connection between said high voltage transformer and said corona discharge chamber. Within said chamber, relatively large volumes of oxygen may be exposed to the high field density, ozone producing, resonating discharges as a consequence of its flexible and linear design. The apparatus and methods described herein permit and encourage the use of intermittent and cyclic application of resonating energy and therefore achieves an improved degree of electrical efficiency. The teachings of the present invention make practical the use of alternative sources of energy for the private and commercial generation of ozone gas.
Abstract:
A sterilizer having a generator of concentrated (10% +) ozone, a holding tank receiving the generator output, a sterilizer chamber fed from the holding tank, and a control maintaining ozone concentration in the tank to insure the desired ozone level in the sterilization chamber.
Abstract:
An ozone generator has a construction in which: an outer and an inner sleeves made of fused quartz or ordinary glass are mounted inside a casing of the generator, which sleeves are substantially concentrically arranged to form an air gap therebetween, while conducting films are formed on the outer periphery of the outer sleeve and the inner periphery of the inner sleeve to provide opposite discharge electrodes an inner one of which is grounded and an outer one of which is connected to high voltage side of an electric source, to which air gap a raw gas is fed while electrical discharge is conducted between these electrodes to produce ozonized gas from the raw gas.
Abstract:
A corona reaction system of the type wherein substantially all of the heat generated by corona discharge is removed from the system by gas flow therethrough. A corona discharge gas flow path is provided which is between 2.0 and 10 inches in length and bounded by discharge electrodes spaced apart at a distance of between 0.01 to 0.250 inch, whereby low pressure drop over the gas flow path is maintained under conditions of high power density and gas temperature.
Abstract:
A high frequency tubular ozonizer in which low voltage and high voltage electrodes are coaxially disposed metal pipes. The high voltage electrode is made detachable, and a portion of the electrode disposed in a discharge gap, is coated with a dielectric. The low voltage electrode is cooled directly with a coolant flow. The ozonizer has a reliable centering device, due to which the low voltage and high voltage electrodes can be easily arranged coaxially. Low and high voltage units, in the ozonizer, can be easily assembled or taken apart. To increase the operating capacity ozonizers can be either coupled by means of common pipelines to form multielement installations or they can be coupled in a common housing.
Abstract:
An ozoniser comprises a plurality of parallel electrode assemblies each consisting of concentric metal and dielectric tubes with a gap between them through which air or other oxygen containing gas is passed, the metal tube forming one electrode and a conductive liquid being provided on the surface of the dielectric remote from said gap to form the other electrode. The metal tube is cooled by a liquid flowing therethrough and the liquid of the liquid electrode is used to cool the dielectric tube. One of the electrodes may be earthed; the liquid or coolant for the other electrode is passed through long tubes of electrical insulating material to reduce the current through the liquid if the liquid is conductive. One electrode is earthed and the other is switched alternately to the positive and negative terminals of a high voltage D.C. supply using thyratrons controlled by a variable frequency trigger pulse generator.
Abstract:
A TUBULAR-SHAPED OZONIZER OF THE TYPE EQUIPPED WITH A COOLED INNER ELECTRODE AND A DIELECTRIC TUBE CONCENTRICALLY ARRANGED BETWEEN THE INNER ELECTRODE AND AN OUTER ELECTRODE. THE TUBULAR-SHAPED INNER AND OUTER ELECTRODES AND THE DIELECTRIC ELECTRODE ARE HELD AND MAINTAINED IN SPACED RELATIONSHIP FROM ONE ANOTHER BY ELECTRICALLY INSULATING CLOSURE CAP MEMBERS MOUNTED AT THEIR ENDS. ACCORDING TO THE INVENTION, THE SPACE BETWEEN THE INNER ELECTRODE AND THE OUTER ELECTRODE WHICH IS OF SUBSTANTIALLY CIRCULAR-SHAPED CROSS-SECTIONAL CONFIGURATION IS SUBDIVIDED BY THE DIELECTRIC TUBE INTO AN OUTER DISCHARGE
COMPARTMENT AND AN INNER COOLING COMPARTMENT. THE DISCHARGE COMPARTMENT AND COOLING COMPARTMENT COMMUNICATE BY MEANS OF SPACED HOLLOW COMPARTMENTS OF THE CLOSURE CAPS WITH CONDUIT CONNECTIONS PROVIDED AT SUCH CLOSURE CAPS FOR SUPPLYING THE DISCHARGE COMPARTMENT WITH AIR AND THE COOLING COMPARTMENT WITH A COOLING FLUID MEDIUM.