Abstract:
The present invention relates to a laminate for battery encasement comprising aluminum foil and an inner layer, wherein a resin film layer that comprises an aminated phenol polymer (A), an acrylic polymer (B), a phosphorus compound (C), and a zirconium compound (D) lies between the aluminum foil and the inner layer. The laminate for battery encasement of the present invention is excellent in adhesiveness, gas impermeability, etc., and therefore can be suitably used as a material for encasing a secondary battery, particularly a lithium ion polymer secondary battery.
Abstract:
Provided are a gas-barrier film which is a laminate comprising a substrate layer comprising a thermoplastic resin film and a gas-barrier layer comprising a hydrolysate of a silicon alkoxide, a stratified silicate and a polyvinyl alcohol base resin, wherein a radius (Rg) of gyration of a scattering matter which is measured by light scattering in the gas-barrier layer described above is 2.4 nullm or less, and the silicon alkoxide and/or the hydrolysate thereof are present between the layers of the stratified silicate present in the above gas-barrier layer. The above film shows an excellent gas-barrier property even under such a high humidity as exceeding 90% RH.
Abstract:
A resin composition obtained by blending a thermoplastic resin that can be melt-extruded at a solubility parameter of not smaller than 9.5 with an organic oxidizing component and with a transition metal catalyst, the organic oxidizing component being a polyene having a functional group on a side chain or at a terminal thereof. The resin composition has excellent moldability and gas shut-off property. A multi-layer container having an oxygen-absorbing layer of this resin composition exhibits excellent gas-barrier property and is capable of favorably preserving the content.
Abstract:
Polymer composite materials comprising of least one polymer resin and platelet particles from at least one layered silicate material uniformly dispersed in the resin and articles prepared from the polymer composite materials. The polymer composite contains at least one polyamide resin, at least one oxygen scavenging system, and at least one layered silicate material. These polymer composite materials are especially useful for manufacturing clear polyester bottles and polyester film that are recyclable have improved active gas barrier properties to oxygen, and have improved passive barrier properties to carbon dioxide and other gases. The polymer composite materials can be used in relatively minor amounts as either a blend or a coextruded thin layer with virgin or post consumer recycled polyesters and related copolymners.
Abstract:
Disclosed herein is a resin composition which comprises (A) an ethylene-vinyl alcohol copolymer having an ethylene content of 20-70 mol %, (B) a polyamide resin, and (C) a hydrophobic plasticizer which satisfies the condition specified by equation (1) below, with the amounts of components (A), (B), and (C) being 55-97 parts by weight, 3-45 parts by weight, and 0.1-30 parts by weight, respectively, on the basis of 100 parts by weight of the total amount of components (A) and (B). 15nullnullCH(A)null1/2nullSP(C)null22nullnull(1) where CH(A) denotes the ethylene content (mol %) in the ethylene-vinyl alcohol copolymer as component (A), and SP(C) denotes the solubility parameter of the hydrophobic plasticizer as component (C), which is calculated from Fedors equation. The resin composition can be formed into film or sheet superior in gas barrier properties readily by heat stretching without cracking and local thickness variation.
Abstract:
A resin composition comprising: a polyvinyl alcohol; and an inorganic laminar compound having an aspect ratio of not less than 50 and not more than 5000, which has a volume ratio of (inorganic laminar compound/polyvinyl alcohol) in the range of (5/95) to (30/70); and a laminate or laminate film comprising, as at least a portion thereof, a layer or portion (1) comprising such a resin composition. The resin composition, laminate or laminate film may exhibit a good gas barrier property while substantially retaining a good film strength.
Abstract:
A polyester resin composition is produced by melt-kneading a mixture comprising a polyamide resin and a polyester resin, and a tricarboxylic acid compound. The polyamide resin is a polymerization product of a diamine component containing 70 mol % or more of m-xylylenediamine and a dicarboxylic acid component containing 70 mol % or more of adipic acid. The polyester resin is a polymerization product of a dicarboxylic acid component containing 70 mol % or more of an aromatic dicarboxylic acid and a diol component containing 70 mol % or more of an aliphatic diol. The incorporation of a tricarboxylic acid compound such as aromatic tricarboxylic acids and their anhydrides improves transparency and whitening resistance at moisture absorbing of films, sheets and thin-wall hollow containers without deteriorating their gas barrier properties.
Abstract:
It has been unexpectedly found that certain blends of styrene-butadiene rubber and platey filler exhibit both good gas barrier properties and good tensile fatigue properties. These blends accordingly have the requisite characteristics for a tire innerliner material. They offer the advantage of being much less expensive than halobutyl rubbers which can be employed for the same purpose. The present invention more specifically discloses a pneumatic tire having an integral innerliner wherein said innerliner is comprised of a blend of (1) from about 40 phr to about 99 phr of a first styrene-butadiene rubber having a bound styrene content of about 15 percent to about 30 percent, (2) from about 1 phr to about 60 phr of a high styrene content styrene-butadiene rubber having a bound styrene content of about 40 percent to about 60 percent, and (3) from about 40 phr to about 125 phr of platey filler. The subject invention also discloses a pneumatic tire having an integral innerliner wherein said innerliner is comprised of (1) a styrene-butadiene rubber having a bound styrene content of about 15 percent to about 30 percent, and (2) from about 125 phr to about 200 phr of platey filler.
Abstract:
A method of preparing a polar thermoplastic resin having improved resistance to gas permeability is disclosed wherein a blend of the resin and coarse mica flakes having an average particle size of less than about 100 mesh is prepared, the blend being prepared under mixing conditions which impart a shear force to the mica flakes sufficient to delaminate the flakes into individual platelets, substantially increasing the original aspect ratio of the flakes whereby an increase in the gas barrier properties of the resin is attained greater than that attained with fine mica flakes having an average particle size greater than about 100 mesh.
Abstract:
Polyolefin containers having improved gas barrier properties are prepared by forming a billet comprised of a particle mixture of a polyolefin resin, such as polyethylene, an inorganic filler such as CaCO.sub.3 and at least about 13.5% by volume of a vinylidene chloride polymer having a median particle diameter greater than 150 microns. The billet is heated to a temperature of about 25.degree. to 40.degree. F above the melting temperature of the vinylidene chloride polymer and then molded into a hollow container.