Abstract:
The present invention provides a steel pipe excellent in formability during hydraulic forming and the like and a method to produce the same, and more specifically: a steel pipe excellent in formability having an r-value of 1.4 or larger in the axial direction of the steel pipe, and the property that the average of the ratios of the X-ray intensity in the orientation component group of {110} to {332} on the plane at the center of the steel pipe wall thickness to the random X-ray intensity is 3.5 or larger, and/or the ratio of the X-ray intensity in the orientation component of {110} on the plane at the center of the steel pipe wall thickness to the random X-ray intensity is 5.0 or larger; and a method to produce a steel pipe excellent in formability characterized by heating the steel pipe having the property that the ratio of the X-ray intensity in every one of the orientation components of {001} , {116} , {114} and {112} on the plane at the center of the mother pipe wall thickness to the random X-ray intensity is 3 or smaller to a temperature in the range from 650 to 1,200° C. and by applying working under a condition of a diameter reduction ratio of 30% or more and a wall thickness reduction ratio of 5 to 30%.
Abstract:
A method for refining the grain size of alloys which undergo ferromagnetic to paramagnetic phase transformation and an alloy produced therefrom. By subjecting the alloy to a timed application of a strong magnetic field, the temperature of phase boundaries can be shifted enabling phase transformations at lower temperatures. 1 Applicants:Jayoung Koo Shiun Ling Michael J. Luton Hans Thomann Narasimha-Rao V. Bangaru
Abstract:
The present invention is directed to an iron, aluminum, chromium, carbon alloy and a method of producing the same, wherein the alloy has g good room temperature ductility, excellent high temperature oxidation resistance and ductility. The alloy includes about 10 to 70 at. % iron, about 10 to 45 at. % aluminum, about 1 to 70 at. % chromium and about 0.9 to 15 at. % carbon. The invention is also directed to a material comprising a body-centered-cubic solid solution of this alloy, and a method for strengthening this material by the precipitation of body-centered-cubic particles within the solid solution, wherein the particles have substantially the same lattice parameters as the underlying solid solution. The ease of processing and excellent mechanical properties exhibited by the alloy, especially at high temperatures, allows it to be used in high temperature structural applications, such as a turbocharger component.
Abstract:
The present invention is directed to an iron, aluminum, chromium, carbon alloy and a method of producing the same, wherein the alloy has good room temperature ductility, excellent high temperature oxidation resistance and ductility. The alloy includes about 10 to 70 at. % iron, about 10 to 45 at. % aluminum, about 1 to 70 at. % chromium and about 0.9 to 15 at. % carbon. The invention is also directed to a material comprising a body-centered-cubic solid solution of this alloy, and a method for strengthening this material by the precipitation of body-centered-cubic particles within the solid solution, wherein the particles have substantially the same lattice parameters as the underlying solid solution. The ease of processing and excellent mechanical properties exhibited by the alloy, especially at high temperatures, allows it to be used in high temperature structural applications, such as a turbocharger component.
Abstract:
A thermocouple formed of a length of a single composition having first solid phase section adjoining a second solid phase section, and a transition therebetween. One method of making such thermocouples is to raise the temperature of the first solid phase section above its transformation temperature while maintaining the temperature of a second adjoining solid phase section of the length of material below its transformation temperature. A second method includes rapidly solidifying a molten material by contacting it with a moving substrate formed of adjoining regions of differing thermal conductivity. A third method includes rapidly solidifying a molten material by alternatingly contacting it with a cooling fluid and air. A fourth method includes transforming a section of a length of material in a first solid to a second solid phase by mechanical means.
Abstract:
A hot-stretch-reduced electric resistance welded pipe has a base metal portion and a weld portion, the base metal portion has a predetermined chemical composition, a Ti/N value obtained by dividing Ti content by N content is 3.0 or more, in a microstructure of the weld portion, the average grain diameter is 10.0 μm or less, the area ratio of ferrite is 20% or more, and the remaining structure includes at least one or more of pearlite and bainite/martensite, and in a texture of the weld portion, the accumulation intensity of a {001} plane is 6.0 or less, and a critical cooling rate Vc90 of the base metal portion is 5° C./s to 90° C./s.
Abstract:
A bearing assembly, particularly refrigerant lubricated bearing assembly, having at least an inner ring and an outer ring, which are rotatable to each other. At least one bearing ring is made from a nitrogen-alloyed stainless steel having a nitrogen (N) content of more than 0.6 wt.-%. A method for manufacturing such a bearing ring is also provided.
Abstract:
Methods for forming carbon-based lubricious and/or wear-protective films in situ on the surface of steel alloys are provided. The methods use chromium-containing steel alloys, molybdenum-containing steel alloys, and steel alloys that contain both copper and nickel. When such alloys are subjected to a rubbing motion in the presence of a hydrocarbon fluid, the chromium, molybdenum, copper, and nickel in the steel alloy catalyzes the formation of solid carbon-containing films that reduce the friction, wear, or both of the contacting surfaces.
Abstract:
Disclosed is a low-cost non-oriented electrical steel plate with an extremely low aluminum content, which plate comprises the following chemical elements in percentage by mass: 0.003% or less of C, 0.1%-1.2% of Si, 0.1%-0.4% of Mn, 0.01%-0.2% of P, 0.003% or less of S, 0.001% or less of Al, 0.003%-0.01% of O, 0.003% or less of N, and 0.005%-0.05% of Sn, with the condition Si2/P: 0.89-26.04 being satisfied. In addition, further disclosed is a method for manufacturing the non-oriented electrical steel plate. The method comprises steps of: (1) smelting; (2) continuous casting; (3) hot rolling: wherein a hot rolled plate is subjected to soaking and heat preservation by means of residual heat of hot rolled steel coils, rather than being subjected to normalizing treatment or cover furnace annealing after coiling; (4) primary cold rolling; and (5) continuous annealing. In the non-oriented electrical steel plate of the present invention, reasonable chemical ingredients and process designs are used, and the non-oriented electrical steel plate not only has excellent economy, but also has the properties of high magnetic induction and low iron loss.
Abstract:
The present invention relates to a method for producing a magnetic substrate for an encoder scale. The method comprising the step of mechanically working the substrate, wherein the substrate is cooled prior to the mechanical working step. In one embodiment, a stainless steel substrate is used. The stainless steel may comprise an austenite (non-magnetic) phase and a martensite (magnetic) phase. Mechanically working and cooling in this manner increases the amount of magnetic (martensite) phase material that is formed, thereby improving the magnetic contrast when non-magnetic (austenite) marking are subsequently formed on the substrate by laser marking.