Abstract:
A coil of an electric motor is cooled by refrigerant. A controller for the electric motor controls a current supplied to the coil within a range less than or equal to a predetermined maximum value. A temperature detection section detects either a temperature of the coil or a temperature about the coil. When a detection temperature that is detected by the temperature detection section prior to activation of the electric motor reaches a predetermined reference temperature, a limiting section executes a limiting control to limit an upper limit value of the current supplied to the coil to a limiting value that is less than the maximum value. Accordingly, the coil of the electric motor is protected without stopping the operation of the electric compressor immediately after activation.
Abstract:
A safety device for a vacuum pump, arranged to be associated with a duct putting the interior of the casing of the vacuum pump in communication with the outside environment, The safety device comprises a breakable member (3), which breaks when subjected to a pressure, which is at least equal to a predetermined threshold (pbreak) chosen so that the member breaks in case when an overpressure could damage the pump, and remains unbroken at operating pressures during normal operation of pump.
Abstract:
A discharge valve assembly is provided for preventing reverse rotation of a scroll compressor. The discharge valve assembly includes a cup-shaped valve member slidably engaged with a central post of a retainer member. The cup-shaped valve member includes notches in communication between the central post of the retainer and the sidewalls of the cup-shaped valve member.
Abstract:
A control system for a cooling system includes a first sensor for sensing a property indicative of demand for cooling and a controller coupled to the sensor. The controller produces the variable duty cycle control signal in response to the property and causes the compressor and valve to vary a cooling capacity of the cooling system in response to the variable duty cycle control signal. The sensor may sense the pressure, temperature, or both. The valve may be a suction-side pressure regulator or a liquid-side expansion valve of the solenoid or stepper type.
Abstract:
A compressor is provided with an oil separator for separating part of the lubricating oil contained in the compressed refrigerant, path arrangement for connecting a separation chamber of the separator and a delivery port of the compressed refrigerant, the path arrangement having a plurality of linear holes with opening ends that open in the outer surface of the housing wall, and screw plugs closing the opening ends except for the one serving as the delivery port, and a safety device built in at least one of the screw plugs, the safety device having a pressure relief valve and/or a temperature sensor.
Abstract:
Disclosed is a method of controlling drive speed of a motor operating in overload conditions. The method includes the steps of: driving the motor at a predetermined reference speed; detecting phase voltage and phase current applied to the motor; determining whether or not the motor is operating in overload conditions based on the detected phase voltage and phase current; and controlling the motor according to whether or not the motor is operating in overload conditions. Accordingly, the present invention can prevent occurrence of over-current due to the instantaneous acceleration of the motor to a predetermined initial speed.
Abstract:
A system includes a compressor having a shell and a motor disposed within the shell. A first sensor is provided for monitoring a discharge temperature of the compressor, a second sensor is provided for monitoring a temperature of the motor, and a third sensor is provided for monitoring at least one of current and voltage. Processing circuitry receives sensor data from the first sensor, the second sensor, and the third sensor and processes the sensor data to diagnose the compressor.
Abstract:
A pump comprises at least one rotor (1), a stator (5) and a housing (5), the rotor (1) being enclosed by the housing (5). The housing (5) comprises at least one port (2) extending through the housing (5) to enable delivery of a fluid directly onto a surface of the at least one rotor (1).
Abstract:
Disclosed is a method of controlling drive speed of a motor operating in overload conditions. The method includes the steps of: driving the motor at a predetermined reference speed; detecting phase voltage and phase current applied to the motor; determining whether or not the motor is operating in overload conditions based on the detected phase voltage and phase current; and controlling the motor according to whether or not the motor is operating in overload conditions. Accordingly, the present invention can prevent occurrence of over-current due to the instantaneous acceleration of the motor to a predetermined initial speed.
Abstract:
Low voltage electrical power is supplied to a diagnostic control device in a sealed compressor. Electrical power is tapped from a high voltage power line and transformed to low voltage power that in turn operates the diagnostic control device. The diagnostic control device and the electric voltage transforming system are housed within the sealed compressor shell, thus eliminating the need for additional openings in the compressor shell. Other low voltage devices can be powered in this way.