Abstract:
A compact optical scanning apparatus which can change the focal position of a light beam at high speed is provided. In this optical scanning apparatus, a collimating lens (5) which parallelizes a light beam from a light source (1) is formed by a KTN crystal, and electrodes (7, 6, 8) are placed inside and outside the collimating lens (5).
Abstract:
A resistor heater includes an anode (10) arranged along one side and a cathode (20) arranged along the other side of a thin-line-shaped resistor (30). The anode (10) is connected to the resistor (30) at connections points (P2, P3) by a plurality of branches (13, 14) arranged at a certain interval along the resistor (30). The cathode (20) is connected to the resistor (30) at connection points (P1, P4) by branches (23, 24) arranged at a certain interval along the resistor (30). The connection points (P1, P4) are located at positions shifted from one another along the resistor (30). A portion (31) of the resistor (30) located between the connections points (P1, P2) and a portion (32) of the resistor (30) located between the connection points (P3, P4) function as effective regions of the resistor (30).
Abstract:
Various improvements in electrophoretic media and displays intended for use in light modulators are described. These improvements include index matching of the suspending fluid to a continuous phase surrounding the fluid, index matching of a capsule wall to a binder, planarization of a layer containing electrophoretic capsules before application of adhesive thereto, methods for concentrating electrophoretic particles into limited areas of sidewalls of electrophoretic capsules or microcells in the light-transmissive state of the display, and, in the case of light modulators comprising an electrophoretic layer sandwiched between two transparent plates, forming at least one of the plates so as to absorb electromagnetic radiation which adversely affects the electrophoretic layer.
Abstract:
A pixel electrode structure of a display device is discussed. According to an embodiment, the pixel electrode structure includes a plurality of sub pixel electrodes disposed substantially in parallel in the pixel region, wherein the sub pixel electrodes have progressively greater widths and progressively greater spaces therebetween starting from one side of the pixel region to the other opposite side of the pixel region.
Abstract:
A variable optical device for controlling the propagation of light has a liquid crystal layer (1), electrodes (4) arranged to generate an electric field acting on the liquid crystal layer, and an electric field modulation layer (3,71) arranged between the electrodes and adjacent the liquid crystal layer for spatially modulating said electric field in a manner to control the propagation of light passing through said optical device. The electric field modulation layer has either an optical index of refraction that is essentially spatially uniform, or a polar liquid or gel, or a very high low frequency dielectric constant material having a dielectric constant greater than 20, and preferably greater than 1000. The modulation layer can have a solid body having a first low frequency dielectric constant with a shape selected to impart a desired modulation of the electric field, and a second low frequency dielectric constant material surrounding or adjacent to the solid body such that the solid body and the second material form a layer geometry.
Abstract:
A display device includes at least one cell containing a fluid having colored particles dispersed in the fluid and at least one dot field applicator associated with the cell. The dot field applicator may be a dote electrode.
Abstract:
An electronic notebook includes a case; a sheet-like display medium provided in the case, containing charged particles, and having a first surface and a second surface; a first electrode disposed on the case; and a second electrode disposed on the case. By changing a positional relationship between the display medium and the first electrode and the second electrode, the display medium and the first electrode and the second electrode take on either an arranged state in which the display medium is interposed between the first electrode and the second electrode so that the first surface of the display medium opposes the first electrode and the second surface of the display medium opposes the second electrode, or a non-arranged state that is a state other than the arranged state.
Abstract:
In an image display device which includes an image display panel, in which two or more groups of particles having different colors and different charge characteristics are sealed in a plurality of cells formed by partition walls between two substrates, at least one of two substrates being transparent, and, in which the particles, to which an electrostatic field produced by electrodes provided to both of the substrates is applied, are made to move so as to display an image, as the electrodes provided on two substrates, use is made of a pattern electrode patternized in such a manner that a coating area of the electrode satisfies a predetermined condition with respect to a projected area of respective cells (first invention) or a pattern electrode patternized in such a manner that no electrode portion is formed at a vertically lower portion in respective cells (second invention).
Abstract:
The present invention relates to an optical modulator capable of preventing a disconnection of an electrode and improving a discontinuity of a characteristic impedance while realizing a polarization inverting area and a ridge waveguide in a single optical modulator. In the optical modulator, a first electrode is composed of an inverting area electrode portion formed on an upper portion of one of first and second waveguides in the polarization inverting area, a non-inverting area electrode portion formed on an upper portion of the other one of the first and second waveguides in the other area, and a connection portion for making a connection between the inverting area electrode portion and the non-inverting area electrode portion at the boundary between the polarization inverting area and the other area. A supporting mechanism for supporting the connection portion of the first electrode is provided in a groove.
Abstract:
The electrophoretic display panel (1) for displaying a picture corresponding to image information has drive means (100) which are able to control for each picture element (2) the potentials, thereby being able to change the position of the particles (6) based on the image information. Furthermore, the display panel (1) has monitoring means (101) which are able to generate for each picture element (2) actual position information indicative for the actual position of the particles (6), and control means (103) which are able to control for each picture element (2) the drive means (100) in dependence of the actual position information and the image information to reduce a difference between the position of the particles (6) and the position off the particles (6) corresponding to the image information. For the display panel (1) to be able to provide a picture of relatively high quality even at relatively low or nonuniform intensities of the ambient light, the monitoring means (101) comprise electrical means (102) which are able to generate for each picture element (2) the actual position information based on an electrical property of the respective picture element (2).