Abstract:
A variable attenuation device includes: a first variable attenuator configured to receive a first signal through a first input end, attenuate the first signal by an amount of attenuation according to a control voltage, and output the attenuated first signal through a first output end, the first signal being one of a pair of differential signals having a 180-degree phase difference; a second variable attenuator configured to receive a second signal through a second input end, attenuate the second signal by the amount of attenuation according to the control voltage, and output the attenuated second signal through a second output end, the second signal being the other one of the pair of differential signals; a first signal distributer configured to distribute the second signal to the first output end; and a second signal distributer configured to distribute the first signal to the second output end.
Abstract:
A receiver front end capable of receiving and processing intraband non-contiguous carrier aggregate (CA) signals using multiple low noise amplifiers (LNAs) is disclosed herein. A cascode having a “common source” input stage and a “common gate” output stage can be turned on or off using the gate of the output stage. A first switch is provided that allows a connection to be either established or broken between the source terminal of the input stage of each cascode. Further switches used for switching degeneration inductors, gate/sources caps and gate to ground caps for each legs can be used to further improve the matching performance of the invention.
Abstract:
Attenuators having phase shift and gain compensation circuits. In some embodiments, a radio-frequency (RF) attenuator circuit can include one or more attenuation blocks arranged in series between an input node and an output node, with each attenuation block including a local bypass path. The RF attenuator circuit can further include a global bypass path implemented between the input node and the output node. The RF attenuator circuit can further include a phase compensation circuit configured to compensate for an off-capacitance effect associated with at least one of the global bypass path and the one or more local bypass paths.
Abstract:
Described herein are variable gain amplifiers and multiplexers that embed programmable attenuators into switchable paths that allow signals in a high gain mode to bypass attenuation. This advantageously reduces or eliminates performance penalties in the high gain mode. The programmable attenuators can be configured to improve linearity of the amplification process through pre-LNA attenuation in targeted gain modes. In addition, described herein are variable gain amplifiers with embedded attenuators in a switching network. The attenuators can be embedded onto switches and can be configured to have little or no effect on a noise factor in a high gain mode because the switching network can provide an attenuation bypass in a high gain mode and an attenuation in other gain modes. The programmable attenuators can be embedded onto a multi-input LNA architecture.
Abstract:
An output signal can be free of any noise component generated from an amplifier disposed in a path, without degradation of the S/N ratio of the output signal. An amplifier includes: a first amplifier that is connected to an input node and generates a first intermediate signal; a feedback resistor that enables feedback of the first intermediate signal to the input node; an attenuator that receives the first intermediate signal and generates a second intermediate signal; a second amplifier that is connected to the input node and generates a third intermediate signal; a third amplifier that is connected to the input node and generates a fourth intermediate signal; and an adder that generates an output signal, using the second intermediate signal, the third intermediate signal, and the fourth intermediate signal.
Abstract:
The embodiments described herein include amplifiers configured for use in radio frequency (RF) applications. In accordance with these embodiments, the amplifiers are implemented to generate a shaped envelope signal, and to apply the shaped envelope signal to transistor gate(s) of the amplifier to provide gate bias modulation. So configured, the shaped envelope signal may facilitate high linearity in the amplifier.
Abstract:
Apparatus (301) for switchable attenuation of a differential input signal from a microphone includes positive and negative non-attenuating paths (406, 410) have n- and p-type MOSFETs (421, 422, 423, 424) in back-to-back configurations; positive and negative attenuating paths (405, 409) have n- and p-type MOSFETs (415, 416, 418, 419) in back-to-back configurations in combination with resistors; a gate driver (425) applies a drive signal of one polarity (QNEG) to gates of the n-type MOSFETs in the attenuating paths and the p-type MOSFETs in the non-attenuating paths, and a drive signal of opposite polarity (QPOS) to the gates of the p-type MOSFETs in the attenuating paths and the n-type MOSFETs in the non-attenuating paths; and the state of the MOSFETs depends on the drive signals at their gates, and thus the input signal may be routed via either the non-attenuating paths or the attenuating paths by controlling the drive signals.
Abstract:
A power amplification module includes a first input terminal that receives a first transmit signal in a first frequency band, a second input terminal that receives a second transmit signal in a second frequency band having a narrower transmit/receive frequency interval than the first frequency band, a first amplification circuit that receives and amplifies the first transmit signal to produce a first amplified signal and outputs the first amplified signal, a second amplification circuit that receives and amplifies the second transmit signal to produce a second amplified signal and outputs the second amplified signal, a third amplification circuit that receives and amplifies the first or second amplified signal to produce an output signal and outputs the output signal, and an attenuation circuit located between the second input terminal and the second amplification circuit and configured to attenuate a receive frequency band component of the second frequency band.
Abstract:
An adjustable power splitter includes: a power divider with an input and a first and second divider output; a first adjustable phase shifter and first adjustable attenuator series coupled to the first divider output and providing a first power output; a second adjustable phase shifter and second adjustable attenuator series coupled to the second divider output and providing a second power output; an interface; and a controller. The controller is configured to receive, via the interface, data indicating phase shifts to be applied by the first and second adjustable phase shifters and attenuation levels to be applied by the first and second adjustable attenuators, and to control, based on the data, the phase shifts and attenuation levels applied by the first and second adjustable phase shifters and the first and second adjustable attenuators.