Abstract:
A multicast message replication method and apparatus are provided. The method includes: step 1. storing a received message in a message cache module, and an inter-port replication module acquiring a cache address of the message, inter-port replication information of the message, and inner-port replication information of the message, replicating the cache address according to the inter-port replication information, and transmitting the replicated cache address and the corresponding inner-port replication information to a port queue module to be stored; step 2. a port scheduling module scheduling the cache address of the port queue module, and under the scheduling by the port scheduling module, the port queue module outputting a cache address for which message replication needs to be performed according to the stored corresponding inner-port replication information; step 3. the message cache module reading a corresponding message according to the cache address output by the port queue module and outputting.
Abstract:
A method for operating a network having a plurality of terminals and a plurality of switches connected to one another via data lines has the first step of transmitting a multicast MMRP data packet from a data source via at least one of the switches and one of the data lines to a predetermined terminal intended to receive the multicast data packet. Then one port of a switch to which is connected another terminal that is not MMRP-capable is fed the multicast address as a static entry of the terminal connected to the one port. The multicast address is then transmitted to the at least one switch connected thereto.
Abstract:
The present invention relates to a packet switch and a packet switching method. An example embodiment of the present invention comprises at least three network ports, at least one instrument port, a mux-switch, a packet switch fabric, and an address table. The embodiment updates the address table to include the source address of each ingress packet of each network port and associate the source address with that network port. The mux-switch routes the ingress packet traffic of each network port according to the identity of the network port so that at least a copy of the packet traffic of one of the network ports is routed to an instrument port. The packet switch fabric routes the packets from the instrument ports to the network ports according the destination address of the packet and the identity of the network port that is associated with the destination address as recorded in the address table.
Abstract:
A method for enabling multicast forwarding relates to the field of IP communication technologies. The method for enabling multicast forwarding implements flexible networking and enables proper function of the multicast proxy. A switch device receives a multicast protocol message; the switch device determines a sender of the multicast protocol message according to a port from which the multicast protocol message is received; the switch device transmits the multicast protocol message transparently if the sender of the multicast protocol message is a routing device or a switching device, and the switch device terminates the multicast protocol message according to a multicast proxy function if the sender of the multicast protocol message is a host of a multicast user.
Abstract:
An information handling system is provided. The information handling system includes an ingress network device receiving a multicast stream from a coupled source device and a first and a second egress network device. The first and second egress network devices each receive the multicast stream for coupled destination devices. The information handling system also includes a plurality of intermediate network devices by which the ingress network device is coupled to the first and second egress network devices to form a network and further includes a network controller. The network controller has a topology of the network in a memory and forms a multicast tree based on the topology as well as a link load level and a multicast replication capacity associated with links to the first and second egress network devices and to each of the plurality of intermediate network devices.
Abstract:
Embodiments of the present invention provide a method, a device, and a system for creating a bidirectional multicast distribution tree based on an interior gateway protocol, the method includes: generating, according to a root address of a first node flooded by the first node through an IGP and a shortest path tree algorithm, a shortest path to another node with the first node as a source node, and constructing a flooding tree according to the shortest path; and when receiving layer 3 multicast group information flooded by an edge node, determining, according to the layer 3 multicast group information and a multicast group range that is supported by the first node, a flooding tree corresponding to each layer 3 multicast group, and performing pruning, according to the layer 3 multicast group information, to the flooding tree corresponding to each layer 3 multicast group, to generate a bidirectional multicast distribution tree.
Abstract:
A system and method are provided that support a routing using a tree-like or graph topology that supports multiple links per node, where each link is designated as an Up, Down, or Lateral link, or both, within the topology. The system may use a segmented MAC architecture which may have a method of re-purposing MAC IP addresses for inside MACs and outside MACs, and leveraging what would normally be the physical signaling for the MAC to feed into the switch.
Abstract:
A method and device for service time division multiplexing as well as a method and a device for transmitting service are disclosed. The method for service time division multiplexing includes selecting a part or all of radio frames in one time unit as specific radio frames; and selecting a part or all of subframes in the specific radio frames as specific subframes for sending a specific service. The specific service is a multimedia broadcast multicast service, or a unicast service, or one or more than one kind of services transmitted in broadcast or multicast mode.
Abstract:
A method for multicast replication by a host channel adapter (HCA) involving receiving a multicast packet, by a receive pipeline for processing packets of the HCA, storing, in a payload RAM within the HCA, a multicast packet payload corresponding to a data portion of the multicast packet, identifying, from a multicast header of the multicast packet, a plurality of destination underlying functions and a plurality of corresponding destination QPs to which the multicast packet is directed, wherein each destination underlying function of corresponds to a virtual machine located on a host, identifying, from the multicast header, information to be replicated for each multicast packet destination, injecting, by the HCA, a number of multicast packet descriptors corresponding to a number of the corresponding destination QPs into the receive pipeline of the HCA, and copying, from the payload RAM, the multicast packet payload to each of the corresponding destination QPs.
Abstract:
Described embodiments provide a method of processing packets of a network processor. One or more tasks are generated corresponding to received packets associated with one or more data flows. A traffic manager receives a task corresponding to a data flow, the task provided by a processing module of the network processor. The traffic manager determines whether the received task corresponds to a unicast data flow or a multicast data flow. If the received task corresponds to a multicast data flow, the traffic manager determines, based on identifiers corresponding to the task, an address of launch data stored in launch data tables in a shared memory, and reads the launch data. Based on the identifiers and the read launch data, two or more output tasks are generated corresponding to the multicast data flow, and the two or more output tasks are added at the tail end of a scheduling queue.