Abstract:
A first polygonal motor correction value and a first drum motor correction value are provided to the polygonal motor and the photosensitive drum motor so that an image formed by a printer unit has a 100% magnification on the basis of data provided from a reference pattern generating unit which generates an ideal pattern data having no magnification error. Next, a document, on which a predetermined pattern is printed, is scanned by a scanner unit, and then, a second polygonal motor correction value and a carriage motor correction value are provided to the polygonal motor and the carriage motor so that an image printed using the printer unit has a 100% magnification. In the case of forming an image by the printer unit in a state that a main scanning/feed direction of the scanned image is inverted, an image is formed using the first polygonal motor correction value, the carriage motor correction value and a second drum motor correction value calculated from the first and second polygonal motor correction values and the first drum motor correction value.
Abstract:
A film scanner performs a main-scan of a film by an imaging device and performs a sub-scan of the imaging device so as to enable scanning at any resolution using a simple configuration. The scanning mechanism, for the sub-scan of the film with respect to the imaging device, has a transport table for supporting the film held by a film holder and transporting it in a sub-scan direction and a transport mechanism for moving the transport table in the sub-scan direction. The source of the drive power of the transport mechanism is a scan motor (stepper motor) driven by a pulse signal output from a motor drive circuit. The motor drive circuit is configured to enable micro-stepping of the scan motor.
Abstract:
A rotational shaft of a photosensitive drum is connected to a rotational shaft of a stepping motor by a coupling, so that the stepping motor directly drives the photosensitive drum. Here, &thgr; (°) indicating a step angle of the stepping motor, p (mm) indicating a distance between scanning lines on the photosensitive drum, &pgr; indicating the circular constant, and d (mm) indicating a diameter of the photosensitive drum are set so as to satisfy an equation n·&thgr;=(360·p)/(&pgr;·d) to make an optical unit scan the photosensitive drum by one scanning line every time the photosensitive drum is made to rotate n steps, n being a positive integer.
Abstract:
A phase-difference-measuring-circuit counts time-lags of beam-detect-signals with regard to a reference beam-detect-signal based on a reference clock. The counted values are stored in respective registers. When register-load-signals are set to "active", the stored values are loaded to pulse-generating-circuits, and counters in the pulse-generating-circuits count down the stored values based on the reference clock. During this count down operation, pulse-generating-circuits output one-shot-pulse-signals. When the on-shot-pulse-signals stays active, frequency dividers are set to "disable" and stop their operations. Duties of motor clocks driving rotary polygons in laser-beam-scanning-units are temporarily varied during this period, and the motor clocks are outputted with phase delay corresponding to this period, thereby correcting phase deviation in the main scan direction of the polygons.
Abstract:
An image reading apparatus comprising a fluorescent lamp for lighting an original document; an inverter circuit for turning on the lamp; a plurality of optical part carrying sliders carrying the lamp on one of the sliders; and a magnetic encoder including a magnetism detecting element, wherein the detecting element and the inverter circuit (and an operation panel having a LCD) are spaced from each other and are located at opposite sides of a center of a travel region of the sliders.A shaft-type linear motor comprising a yoke stationarily arranged along the moving direction of a movable piece and made of a ferromagnetic material.A shaft-type linear motor comprising a shaft-type stator and a movable piece reciprocatable along the stator, wherein the stator and the movable piece are covered with a protection cover. The cover may be made of a ferromagnetic material.
Abstract:
An image scanner of the present invention includes an angle sensor for controlling subscanning and implemented by a position sensitive light detector (PSD). The angle sensor allows a subscanning mirror to be rotated at high speed without any vibration. A slit plate for causing a restricted part of light issuing from a light emitting element to be incident to the PSD is so configured as to cover the light emitting element, thereby reducing the size of the image scanner.
Abstract:
A method and apparatus for use in improving the accuracy of scanning systems is disclosed and claimed. Systems such as internal drum photoplotters include a raster scanner responsive to control signals for advancing relative to a substrate an optical beam across a substrate surface in a first direction forming a scan line of pixels and for cooperatively advancing relative to the substrate the optical beam in a second direction substantially perpendicular to the first direction. The clock signal which is provided to a spinner to advance the optical beam across the scan line is independent from the pixel clock signal which is provided to control the generation of pixels. There is a memory for storing error compensation signals indicative of compensation needed to remove deviations of the separation between adjacent pixels in said scan line from preferred values thereof. The apparatus is characterized by a controller for generating control signals in dependence on the error compensation signals such that the phase of the clock signal is adjusted, thereby removing the pixel separation error for a segment of the scan line.
Abstract:
An imaging system for forming multiple superimposed image exposure frames on a photoconductive member moving in a process direction including a rotating polygon having a plurality of facets. A raster output scanner forms a plurality of scanlines in a transverse direction across the photoconductive member by reflecting modulated beams from the rotating polygon. A method of providing scanning speed and phase shift control by providing a signal representing image exposure frame registration and a start of scan (SOS) signal representing the beginning of a scanline. The relative phase between the start of scan signal and the signal representing image exposure frame registration is determined and converted into a digital signal along with a speed determination signal by use of a fast clock timer. The digital signals are summed and inverted in polarity in order to change the speed of the rotating polygon to synchronize the signal representing image exposure frame registration with the SOS signal.
Abstract:
A scanning system that accurately positions a moving carriage assembly in two directions relative to a platen. Such a scanning system includes a frame that has a registration member that extends in the Y direction, and a platen whose plane is normal to the Z direction and which is attached to the frame. The platen receives a substrate in a predetermined position relative to the registration member. The scanning system further includes a base that has a first and second tilted surfaces that extend in the Y direction, and a moving carriage assembly that is disposed between the platen and the base. The moving carriage assembly includes a housing, at least one button connected to the housing, and first and second biased pivot arms with first and second rollers that ride on the first and second tilted surfaces. The biased pivot arms push the housing against the tilted surfaces such that the button contacts the platen and the registration member. Furthermore, the moving scan imaging system also includes a motion inducing system for moving the moving carriage assembly relative to the platen. Beneficially, when the motion inducing system moves the moving carriage assembly the first and second rollers slide and roll along on the tilted surfaces and therefore bias the button toward the registration member.
Abstract:
In an image reading apparatus, an optical unit goes out from a reference stop position, reads an image from a document, and returns to the reference stop position. A position sensor detects a position of the optical unit and output a trigger signal when the optical unit comes to a predetermined position. There is provided a frequency divider to divide a frequency of a pulse signal used to detect the rotations of a driving motor, a pulse width detector to detect the divided pulse width in response to the trigger signal, and a rectifier to rectify an braking amount applied onto the driving motor in accordance with the pulse width so that the optical unit is stopped at the reference stop position.