Abstract:
The proceeding of peeling of a conductive layer in the vicinity of terminals is prevented. A display panel includes a conductive layer extending to the outside of terminals, and the conductive layer has slits extending in directions from one end face to the other end face alternately at two end faces along the extending direction of the conductive layer.
Abstract:
The present invention provides 1. A method for forming an inorganic thin film pattern on a polyimide resin, which has: (1) a step of forming an alkali-resistant protective film having a thickness of 0.01 to 10 μm on a surface of a polyimide resin; (2) a step of removing the alkali-resistant protective film and a superficial portion of the polyimide resin at the site where an inorganic thin film pattern is formed to form a concave part; (3) a step of contacting an alkaline aqueous solution to the polyimide resin in the concave part to cleave an imide ring of the polyimide resin so as to produce a carboxyl group whereby a polyimide resin having the carboxyl group is formed; (4) a step of contacting a solution containing a metal ion to the polyimide resin having the carboxyl group so as to produce a metal salt of the carboxyl group; and (5) a step of separating the metal salt as a metal, a metal oxide or a semiconductor on the surface of the polyimide resin so as to form the inorganic thin film pattern.
Abstract:
A metallized polyimide film includes: a polyimide film including a first side and a second side; an intermediate layer that contains at least one element selected from the group consisting of Mo, Cr, Ni, Si, Fe, and Al, a deposition amount of the at least one element being between 0.3 and 15 mg/m2; and a conductive layer that is made of one of copper and a copper alloy formed on the intermediate layer; an oxygen and water barrier film that is made of at least one member selected from the group consisting of silicon oxide, aluminum oxide, titanium oxide, tin oxide, indium oxide, magnesium fluoride, magnesium oxide, aluminum, and indium tin oxide (ITO), and that has a thickness of between 5 and 300 nm formed on the second side of the polyimide film.
Abstract:
A panel substrate includes a substrate, a plurality of display electrodes running in parallel on the substrate, and a plurality of wirings respectively continuous from the display electrodes formed on the substrate. The display electrodes and the wirings respectively have a bilayer structure of a transparent conductive layer and a metal layer. The metal layer of the display electrode is substantially narrower in width than the width of the transparent conductive layer.
Abstract:
The dielectric-forming composition according to the invention is characterized by consisting of: composite particles for dielectrics in which part or all of the surfaces of inorganic particles with permittivity of 30 or greater are coated with a conductive metal or a compound thereof, or a conductive organic compound or a conductive inorganic material; and (B) a resin component constituted of at least one of a polymerizable compound and a polymer. In addition, another dielectric-forming composition according to the invention is characterized by containing: ultrafine particle-resin composite particles composed of (J) inorganic ultra fine particles with the average particle size of 0.1 nullm or smaller, and (B) a resin component constituted of at least one of a polymerizable compound and a polymer, wherein part or all of the surfaces of the inorganic ultrafine particles (J) are coated with the resin component (B), and the ultrafine particle-resin composite particles contain 20% by weight or more of the inorganic ultrafine particles (J); and inorganic particles with the average particle size of 0.1 to 2 nullm and permittivity of 30 or greater, or inorganic composite particles in which a conductive metal or a compound thereof, or a conductive organic compound or a conductive inorganic material is deposited on the part or all of the surfaces of the inorganic particles.
Abstract:
A wired circuit board having a semi-conducting layer which has excellent chemical resistance, such as acid resistance and alkali resistance; provides no possibility of minute particles being mixed into parts mounted on the wired circuit board; and yet has excellent surface resistivity against electrostatic damage. In the wired circuit board having a conductive layer formed on one side of a base insulating layer in the form of a predetermined wired circuit pattern and a cover insulating layer formed on the conductive layer, a base-side semi-conducting layer and a cover-side semi-conducting layer, which comprise metal oxide, metal nitride or metal carbide, are formed on the other side of the base insulating layer and the cover insulating layer, respectively, by physical vapor deposition (PVD) or preferably by sputtering.
Abstract:
Disclosed is a display panel including: a display layer for performing display; a flexible substrate for holding or carrying the display layer; a transparent electrode formed on the flexible substrate; and a metal film formed on the flexible substrate, electrically connected to the transparent electrode and made of a material different from that of the transparent electrode. Also disclosed is a method of producing a display panel including the steps of: forming a transparent electrode of a predetermined form on a flexible substrate; forming a metal film of a predetermined form on the flexible substrate so that the metal film is electrically connected to the transparent electrode, the metal film being made of a material different from that of the transparent electrode; and holding or carrying a display layer with the flexible substrate carrying the transparent electrode and the metal film, the display layer being provided for performing display.
Abstract:
Disclosed is a display panel including: a display layer for performing display; a flexible substrate for holding or carrying the display layer; a transparent electrode formed on the flexible substrate; and a metal film formed on the flexible substrate, electrically connected to the transparent electrode and made of a material different from that of the transparent electrode. Also disclosed is a method of producing a display panel including the steps of: forming a transparent electrode of a predetermined form on a flexible substrate; forming a metal film of a predetermined form on the flexible substrate so that the metal film is electrically connected to the transparent electrode, the metal film being made of a material different from that of the transparent electrode; and holding or carrying a display layer with the flexible substrate carrying the transparent electrode and the metal film, the display layer being provided for performing display.
Abstract:
A panel substrate includes a substrate, a plurality of display electrodes running in parallel on the substrate, and a plurality of wirings respectively continuous from the display electrodes formed on the substrate. The display electrodes and the wirings respectively have a bilayer structure of a transparent conductive layer and a metal layer. The metal layer of the display electrode is substantially narrower in width than the width of the transparent conductive layer.
Abstract:
A method of coating a conductive substance on a transparent electrode disposed on a substrate comprises disposing a resin containing the conductive substance over the surface of the substrate, and rubbing and pressing the resin over the surface of the substrate with a pressing shaft to coat a layer of the resin on the transparent electrode. A method of mounting a semiconductor device or the film substrate on the substrate having the transparent electrode coated with the resin layer containing the conductive substance comprises connecting a terminal portion of the semiconductor device or film substrate to the transparent electrode through the resin layer.