Managing volatiles in nuclear waste vitrification

    公开(公告)号:US11508490B2

    公开(公告)日:2022-11-22

    申请号:US17159819

    申请日:2021-01-27

    Applicant: Henry Crichlow

    Inventor: Henry Crichlow

    Abstract: Dangerous, toxic, and/or radioactive volatiles are produced from nuclear fission, nuclear decay, and/or as a byproduct from vitrification of radioactive wastes. Such volatiles are treated during and after vitrification of the radioactive waste, to be converted into fixed-chemicals, that are retained in, on, and/or proximate to a cold-cap located vertically above vitrified melt. The cold-cap may have one or more volatile fixing additives (VFAs) for retaining the fixed-chemicals. The VFAs are located in and/or the cold-cap. The vitrification may occur within at least one human-made cavern. The human-made cavern may be located within a deep geologic rock formation. The deep geologic rock formation may be located at least 2,000 feet below a terrestrial surface of the Earth. The human-made cavern may be formed by first drilling a wellbore from the terrestrial surface to the deep geologic rock formation and then underreaming the wellbore into the deep geologic rock formation.

    Method of making colloidal selenium nanoparticles

    公开(公告)号:US11439979B2

    公开(公告)日:2022-09-13

    申请号:US16937443

    申请日:2020-07-23

    Abstract: Provided is a method of making colloidal selenium nanoparticles. The method includes the steps as follows: Step (A): providing a reducing agent and an aqueous solution containing a selenium precursor; Step (B): mixing the aqueous solution containing the selenium precursor and the reducing agent to form a mixture solution in a reaction vessel and heating the mixture solution to undergo a reduction reaction and produce a composition containing selenium nanoparticles, residues and a gas, and guiding the gas out of the reaction vessel, wherein an amount of the residues is less than 20% by volume of the mixture solution; and Step (C): dispersing the selenium nanoparticles with a medium to obtain the colloidal selenium nanoparticles. The method has advantages of simplicity, safety, time-effectiveness, cost-effectiveness, high yield and eco-friendliness.

Patent Agency Ranking