Abstract:
The present invention pertains to the construction of analytic instruments and can be used for analyzing natural and industrial water, biological samples, geological samples and air. The purpose of this invention is to reduce substantially the power used by the atomizer and the analyzer, and to increase the number of objects that can be analyzed. To this end, the method for the thermionic atomization of a sample involves carrying out an ionic sputtering of the sample from the cathode in a low-pressure discharge. The cathode is heated by the discharge to a temperature of between 800 and 1400° C., while the ballast gas consists of Kr or Xe under a gas pressure of 10 to 15 torrs. The thermionic atomization device includes an atomizer arranged in a gas-discharge chamber filled with an inert gas. The atomizer is made in the form of a hollow, cylindrical, metallic and thin-wall cathode. In order to reach this goal, the method involves using a thermionic atomization device which, in an efficient embodiment, consists of the above-mentioned gas-discharge atomizer, i.e. a hollow, metallic and thin-wall cathode. This mechanism enables the sputtering and atomization of the sample in a short time (0.2 to 1 sec.), thus lowering the detection limits while eliminating matrix effects.
Abstract:
In laser scanning microscope systems using short pulsed laser sources incorporating an acousto-optical deflector, compensation is provided for spatial dispersion introduced by the deflector. Spatial dispersion of short pulses, such as those provided by a laser utilized in two photon fluorescence microscopy, occurs due to the higher and lower wavelength components in the pulsed laser beam as the beam is passed through an acousto-optical deflector or other similar diffractive element. A dispersive prism is mounted adjacent to the exit face of the acousto-optical deflector to spatially recombine the components of the pulse. A mirror may be mounted adjacent to the input face of the acousto-optical deflector and adjusted to adjust the angle of incidence of the beam on the input face of the deflector to match the Bragg condition at the center wavelength and so that both sides of the spectrum of the pulses are somewhat Bragg-mismatched and attenuated.
Abstract:
In order to localize element concentrations in the edge areas of a horizontally manufactured continuous casting of alloyed non-ferrous metals, a longitudinal section is removed from the continuous casting. At least one strip of surface layer is then removed transversely by a metal removal unit from the longitudinal section forming a test specimen having a defined thickness. A point-by-point spectroanalysis of the metal composition is then carried out in linear sequence with the aid of a spectral-analysis head in the longitudinal direction of the strip. The element concentration determined in this manner is displayed numerically and/or graphically with the aid of a computer. The metal-removal unit and the spectral-analysis head are placed under the influence of a metal-removal and analysis control unit which is coupled to the computer via a programmable controller and via a spectrometer, respectively.