Abstract:
In a high-pressure discharge lamp that includes a bulb formed from a light emitting part having a discharge space therein and a pair of sealing parts connected to the light emitting part, and an electrode pair disposed within the discharge space, a section of a proximity conductor is wound substantially spirally around one of the sealing parts within a predetermined range from the light emitting part, while the remaining section of the proximity conductor crosses over the light emitting part and is electrically connected to the electrode nearer the other sealing part. By initiating a discharge after applying a high-frequency voltage of 1 kHz to 1 MHz to a high-pressure mercury lamp having this structure, the breakdown voltage can be suppressed to at least 8 kV.
Abstract:
The present invention discloses the organic electroluminescent device in which a plurality of scan lines can be arranged without the spatial limitation to maintain identically resistances of the scan lines. The organic electroluminescent device according to the present invention comprising a plurality of scan lines connected electrically a plurality of cathode electrodes is characterized in that each scan line has a length which is the same as that (those) of the neighboring scan line(s). The scan line has at least one portion which is bent with a certain angle, and the bending frequency of any one scan line is more than that of the scan line formed at an outer side thereof Also, the bending angle of the bent portion of any one scan line is smaller than that of the scan line formed at an outer side thereof.
Abstract:
An aluminum resonator for an electrodeless lighting system includes an inner space configured to receive an electrodeless bulb that emits light by plasmarizing light emitting materials filled inside of the electrodeless bulb. The resonator is configured to transmit light generated by the electrodeless bulb, and the resonator is also configured to shield microwaves generated by a microwave generator and applied to the inner space of the resonator, from discharging to an exterior of the resonator, so that the microwaves are transferred to the electrodeless bulb thereby implementing a resonance mode.
Abstract:
A flat-type fluorescent lamp includes a lamp body having a plurality of discharge spaces emitting a light, first and second external electrodes formed on upper and lower faces of the lamp body, respectively, a conductive clip electrically connecting the first and second external electrodes, and an insulating member covering and insulating the conductive clip. The conductive clip includes a first contact portion contacting the first external electrode, a second contact portion contacting the second external electrode, and a body portion connecting the first and second contact portions. The insulating member includes a recess into which the body portion is inserted. Thus, an electrical defect such as arc discharge between the receiving container and the external conductors may be prevented.
Abstract:
A flat-type fluorescent lamp includes a lamp body and a first external electrode. The first external electrode is positioned on an end portion of the lamp body. The first external electrode includes a main electrode portion and a first auxiliary electrode portion. The main electrode portion crosses end portions of the discharge spaces. The first auxiliary electrode portion protrudes from the main electrode portion. The first auxiliary electrode portion corresponds to an outer discharge space adjacent to a side of the lamp body. Therefore, a luminance of the flat-type fluorescent lamp may be made more uniform, thereby improving an image display quality. In addition, operation of the flat-type fluorescent lamp at a low temperature may be improved.
Abstract:
A method and an apparatus relating to a fine frequency synchronization compensating for a carrier frequency deviation from an oscillator frequency in a multi-carrier demodulation system of the type capable of carrying out a differential phase decoding of multi-carrier modulated signals, the signals comprising a plurality of symbols, each symbol being defined by phase differences between simultaneous carriers having different frequencies. A phase difference between phases of the same carrier in different symbols is determined. Thereafter, a frequency offset is determined by eliminating phase shift uncertainties related to the transmitted information from the phase difference making use of a M-PSK decision device. Finally, a feedback correction of the carrier frequency deviation is performed based on the determined frequency offset. Alternatively, an averaged frequency offset can be determined by averaging determined frequency offsets of a plurality of carriers. Then, the feedback correction of the frequency deviation is performed based on the averaged frequency offset.
Abstract:
A surface light source device includes a light source body having a plurality of discharge spaces into which a discharge gas is injected, an external electrode provided on the outer face of the light source body to apply a discharge voltage to the discharge gas so as to generate plasma in the light source body, and a porous internal electrode arranged in the light source body to provide secondary electrons to the plasma, thereby properly maintaining the plasma. The porous internal electrode includes a porous member, and a conductive layer formed on an outer face of the porous member. The secondary electrons are continuously emitted from the porous internal electrode so that an amount of the plasma is steadily maintained.
Abstract:
Provided is a flat lamp including a lower panel and an upper panel arranged to face each other and forming a discharge space therebetween, a plurality of discharge electrodes formed at least one of the lower and upper panels, and a plurality of auxiliary electrodes formed on a panel where the discharge electrodes are formed and generating a start discharge by a voltage induced in the auxiliary electrode by a voltage is applied to the discharge electrodes.
Abstract:
A clamp structure of an external electrode lamp includes a first fixing device, a second fixing device, and a metal strip. The first fixing device has a first indentation and the second fixing device has a second indentation for clamping an electrode of the external electrode lamp. In addition, the metal strip is located between the first and second fixing devices to contact the electrode of the external electrode lamp for providing power. The electrode can be further equipped with a cushion for fixing the electrode onto the first and second fixing devices.
Abstract:
A plasma display device disclosed herein is capable of enhancing the contrast of external light, facilitating application of phosphor paste on the bottom of each space surrounded by lattice-like barrier ribs, and reducing a variation in the amount of the phosphor paste applied as much as possible. The lattice-like barrier ribs include lateral ribs extending along a first direction while being nearly in parallel to each other, and vertical ribs extending along a second direction different from the first direction while being nearly in parallel to each other. Each of the lateral ribs is composed of two or more rows of rib elements. Notches for communicating spaces surrounded by the vertical ribs and the lateral ribs to each other in the first direction and/or the second direction are formed at least in portions of the vertical ribs and/or the lateral ribs.