Abstract:
According to one embodiment, an electron-emitting electrode includes a first member, a first diamond member, and a second diamond member. A surface of the first member includes a first region and a second region. The first diamond member is provided at the first region. The first diamond member includes a first element that includes at least one of nitrogen, phosphorus, arsenic, antimony, and bismuth. The second diamond member is provided at the second region. The second diamond member includes a second element that includes at least one of boron, aluminum, gallium, and indium.
Abstract:
A carburized La2O3 and Lu2O3 co-doped Mo filament cathode is made from lanthanum oxide (La2O3) and lutetium oxide (Lu2O3) doped molybdenum (Mo) powders, the lanthanum oxide (La2O3) and lutetium oxide (Lu2O3) doped molybdenum (Mo) powders contain La2O3, Lu2O3 and Mo with the total concentration of La2O3 and Lu2O3 being 2.0-5.0 wt. % and the rest being Mo.
Abstract:
According to one embodiment, a tungsten alloy includes a W component and a Hf component including HfC. A content of the Hf component in terms of HfC is 0.1 wt % or more and 3 wt % or less.
Abstract:
A carburized La2O3 and Lu2O3 co-doped Mo filament cathode and its fabrication method, which belongs to the technical field of rare earth-refractory metal cathodes. The rare earth oxides are La2O3 and Lu2O3, and the total concentration of rare earth oxides ranges from 2.0-5.0 wt. %. The La2O3 and Lu2O3 co-doped molybdenum oxide powers are prepared by Sol-Gel method. La2O3 and Lu2O3 co-doped Mo powers are prepared by two calcining steps. Then pressing and sintering the mixed powders to obtain the molybdenum rods; operating mechanical and heat processes of the molybdenum rods to obtain molybdenum filament. Operating electrolytic cleaning, straightening, winding modeling and cutting treatments with Mo filament to obtain the un-carburized La2O3 and Lu2O3 co-doped Mo cathode. And then carburize the filament cathode at a high temperature for a short time to obtain a cathode with high carburization degree. And then operate the out-gassing treatment and activation treatment with the cathode at a high temperature to obtain an environmental and non-radioactive cathode with good emission current and emission stability.
Abstract:
To provide a magnetron improved in high efficiency and load stability while suppressing costs. By shortening the height of vane Vh so that the ratio of the height of vane Vh to a gap between end hats EHg (EHg/Vh) satisfies a condition 1.12≦EHg/Vh≦1.26, an input side pole piece-vane gap IPpvg becomes larger than an output side pole piece-vane gap OPpvg, and an input side end hat-vane gap IPevg becomes larger than an output side end hat-vane gap OPevg, load stability at high efficiency can be improved while shortening the height of vane Vh. Therefore, it is possible to provide a magnetron improved in high efficiency and load stability while suppressing costs.