Abstract:
An optical film for use in backlight module is provided. The optical provides quality luminance of a liquid crystal display (LCD) apparatus. The optical film assembly comprises a substrate with a polarization direction, in which the substrate has a first surface and a second surface opposing thereto. A first prismatic structure is formed on the first surface. The polarization direction of the substrate defines the first angle θ1 with respect to the configured direction of the first prismatic structure, in which 0°
Abstract:
A pixel structure includes at least a pixel electrode, and at least an aligning electrode. The pixel electrode, which has a central opening, is disposed on a substrate. The aligning electrode, which is disposed between the pixel electrode and substrate, includes an aligning part disposed under and corresponding to the central part of the pixel electrode. The aligning voltage applied to the aligning electrode is greater than the pixel voltage applied to the pixel electrode.
Abstract:
A liquid crystal display (LCD) panel including a first substrate, a second substrate, a liquid crystal layer, and a pixel array structure is provided. The first substrate includes a plurality of scan lines and a plurality of data lines, and the second substrate includes a common electrode. The liquid crystal layer is disposed between the first substrate and the second substrate. The pixel array structure includes a plurality of pixel units and a plurality of protrusions. The pixel units are arranged as an array, and each pixel unit includes an active device and a pixel electrode electrically connected the active device, wherein the pixel electrode has a plurality of electrode sections. The protrusions are substantially located in at least one junction region of the electrode sections. The liquid crystal molecules in the LCD panel have fast response speed and correct arrangement direction.
Abstract:
A pixel structure formed on a substrate and electrically connected with a scan line and a data line, and including a semiconductor pattern and a pixel electrode is provided. The semiconductor pattern includes at least two channel areas, at least one doping area, a source area, and a drain area. The channel areas are located below the scan line and have different aspect ratios. The doping area is connected between the channel areas. The pixel electrode electrically connects the drain area, the source area is connected between one of the channel areas and the data line, and the drain area is connected between the other channel area and the pixel electrode. The scan line has different widths above different channel areas, and a length of each channel area is substantially equal to the width of the scan line.
Abstract:
An liquid crystal method, system and method is provided to optimize the view-angle distribution characteristics of 2D/3D LCDs, wherein the photoactive layers, e.g., parallax, lenticular, etc, have their individual respective distances adjusted. The method also permits the adjustment of the relative prism vertex angles among the photoactive layers to further control the view-angle distribution of the light transmitted to the LDC display means. Moreover, the method, system and method provides for the enhanced, as modified by or in accordance with and as a function of both, scope and distance of human vision and vantage point in 2D/3D LCDs.
Abstract translation:提供了一种液晶方法,系统和方法来优化2D / 3D LCD的视角分布特性,其中诸如视差,透镜等的光活性层具有各自的各自的距离。 该方法还允许调节光敏层之间的相对棱镜顶角,以进一步控制透射到LDC显示装置的光的视角分布。 此外,该方法,系统和方法提供了在2D / 3D LCD中由人类视觉和有利位置的范围和距离进行修改或者根据和作为功能的增强。
Abstract:
The pixel in a transflective color LCD panel of the present invention has an additional sub-pixel area. According to the present invention, a pixel is selectively divided into at least three color sub-pixels in R, G, B and a fourth sub-pixel M. Each of the color sub-pixels R, G and B is selectively divided into a transmission area and a reflection area. The fourth sub-pixel M can be entirely reflective or partially reflective. The color filter for use in the pixel comprises R, G, B color filter segments corresponding to the R, G, B color sub-pixels and a filter segment for the fourth sub-pixel. The filter segment for the fourth sub-pixel can be entirely colorless or partially colorless. Furthermore, one or more of the R, G, B color filer segments associated with the reflection area may have a colorless sub-segment.
Abstract:
A transflective liquid crystal display panel is disclosed. The transflective liquid crystal display panel includes an array substrate and a storage capacitor disposed on the array substrate. The array substrate includes a transmitting region, a capacitor region, and a transistor region. The storage capacitor preferably includes a first transparent conductive layer covering the transmitting region and the capacitor region, a dielectric layer disposed on the first transparent conductive layer, and a second transparent conductive layer disposed on the dielectric layer. A planarizing layer is disposed on the second transparent conductive layer, and a reflective layer is then disposed on the planarizing layer of the transistor region.
Abstract:
A dual view display structure and a method for producing the same are provided. First, a display panel is provided. Then, a patterned barrier layer is formed on a transparent substrate. The transparent substrate with the patterned barrier layer is attached to the display panel. Because there is a gap between the display panel and the patterned barrier layer, a liquid transparent material is injected into the gap to form a transparent material layer to fill the gap. The invention can not only increase the viewing angles of the dual view display, but also increase the production yield.
Abstract:
A capacitive touch panel and a display device using the capacitive touch panel are provided. The capacitive touch panel includes a plurality of first direction electrode strings and second direction electrode strings. Each first direction electrode string has a plurality of first electrodes while each second direction electrode has a plurality of second electrodes. In order to reduce the lateral capacitance between adjacent electrodes, width of the first electrode is reduced from the middle to two sides of the electrode along a second direction. In addition, the first electrode has a perimeter surrounding itself. Each quarter of the perimeter of the first electrode facing the adjacent second electrode has a first slope change rate and a different second slope change rate.
Abstract:
A liquid crystal display (LCD) panel including a first substrate, a second substrate, a liquid crystal layer, and a pixel array structure is provided. The first substrate includes a plurality of scan lines and a plurality of data lines, and the second substrate includes a common electrode. The liquid crystal layer is disposed between the first substrate and the second substrate. The pixel array structure includes a plurality of pixel units and a plurality of protrusions. The pixel units are arranged as an array, and each pixel unit includes an active device and a pixel electrode electrically connected the active device, wherein the pixel electrode has a plurality of electrode sections. The protrusions are substantially located in at least one junction region of the electrode sections. The liquid crystal molecules in the LCD panel have fast response speed and correct arrangement direction.