Abstract:
Disclosed is fluorophosphate glasses for an active device, the fluorophosphate glasses including: a metaphosphate composition including Mg(PO3)2 of about 20 mol % to about 60 mol %; a fluoride composition including BaF2 of about 20 mol % to about 60 mol % and CaF2 of about 0 mol % to about 40 mol %; and dopants including rare earth elements, in which there is an effect of increasing a carrier lifetime at a metastable state energy level that is stimulated-emitted due to an efficient energy transfer phenomenon by composition optimization of dopants (e.g. Er and Yb).
Abstract:
Provided are electronic devices having quantum dots and methods of manufacturing the same. An electronic device includes a first nanorod, a quantum dot disposed on an upper surface of the first nanorod, and a second nanorod that covers a lateral surface of the first nanorod and the quantum dot. The first nanorod and the second nanorod are of opposite types.
Abstract:
Provided are a semiconductor laser diode and a method for fabricating the same. The semiconductor laser diode includes a c-plane substrate, a group III nitride layer disposed on the c-plane substrate, and a first semiconductor layer, an active layer, and a second semiconductor layer disposed on the group III nitride layer in the stated order, wherein each of the first semiconductor layer and the second semiconductor layer is exposed to the outside of the semiconductor laser diode.
Abstract:
A fluorescent image acquisition and projection method includes the steps of generating, by a plurality of light sources, invisible fluorescence under control of a control device and obtaining, by a detection unit, a signal of an invisible fluorescent image from a target object. The method further includes the steps of receiving from the detection unit and processing the invisible fluorescent image signal of the target object into a visible fluorescent signal, transmitting the visible fluorescent signal to a projector unit, and projecting, by the projector unit, the visible fluorescent signal onto the target object.
Abstract:
According to an embodiment, a holographic image sensor comprises a lens focusing object light incident from outside of the holographic image sensor to the holographic image sensor, a filter transmitting a predetermined wavelength band of light of the focused object light, a light receiving unit receiving interference light to sense a holographic image, and a reference light source directly emitting reference light having the predetermined wavelength band to the light receiving unit.
Abstract:
This disclosure relates to a digital holographic microscope which is robust to an external environment. According to an aspect of the present embodiment, there is provided an optical system for a digital holographic microscope, the optical system including a beam splitter which reflects a light radiated from a light source toward an object, or passes a light reflected from and traveling from the object; an objective lens focusing the light reflected by the beam splitter on the object; a transflective mirror which is located on the surface of the objective lens and is determined to be transparent or reflective depending on a polarization direction of a light incident to the transflective mirror; and a wave plate which converts the light passing through the beam splitter into a circularly polarized light.
Abstract:
The present invention relates to a micro LED package, a display having the same, and a method for manufacturing the display and, more specifically, to a micro LED package, a display having the same, and a method for manufacturing the display, in which a plurality of micro LEDs having different colors are packaged in a single pixel unit or a plurality of pixel units to facilitate connection to a driving connection electrode unit of the display. In the micro LED package and the display having the same according to the present invention, even if the size of the micro LED chips becomes small, the driving connection electrode unit of the display may be easily connected to the display driving connection electrode unit without rearranging or redesigning the driving connection electrode unit of the display, thereby making it possible to utilize the driving connection electrode unit of the existing display.
Abstract:
An electronic device for image processing using an image conversion network comprises: a communication unit communicating with a user terminal to receive a nighttime image having an illuminance lower than a threshold level from the user terminal and a daytime image captured by a camera of the user terminal; and a control unit for inputting the nighttime image into an image conversion network to generate a daytime image having an illuminance equal to or higher than the threshold level, wherein the image conversion network includes: a pre-processing unit for generating an input image by reducing the size of the nighttime image at a predetermined ratio; a day/night conversion network for generating a first daytime image by converting an illuminance on the basis of the input image; and a resolution conversion network for generating a final image by converting a resolution on the basis of the first daytime image.
Abstract:
Disclosed is an apparatus for measuring texture characteristics of a holographic image that is reconstructed optically by a holographic display device. Provided is an apparatus for measuring texture characteristics of a holographic image, which measures texture characteristics of a holographic image that is reconstructed optically by a holographic display device.
Abstract:
This disclosure relates to a digital holographic microscope which is robust to an external environment. According to an aspect of the present embodiment, there is provided an optical system for a digital holographic microscope, the optical system including a beam splitter which reflects a light radiated from a light source toward an object, or passes a light reflected from and traveling from the object; an objective lens focusing the light reflected by the beam splitter on the object; a transflective mirror which is located on the surface of the objective lens and is determined to be transparent or reflective depending on a polarization direction of a light incident to the transflective mirror; and a wave plate which converts the light passing through the beam splitter into a circularly polarized light.