Abstract:
Disclosed is an image color management system and method for controlling an image output device. The method for controlling the image output device comprises generating an image output device profile LUT (look-up-table) characterizing the color profile of the image output device for a plurality of drift states associated with the image output device; generating a set of augmented basis vectors representing the LUT, L*a*b* values and multiple GCR/UCRs; storing the set of basis vectors in an image output device controller; and generating an image output device active profile associated with a current drift state of the image output device to convert image color data for display or printing by the image output device, wherein the image output device active profile is generated from the set of basis vectors.
Abstract translation:公开了一种用于控制图像输出装置的图像颜色管理系统和方法。 用于控制图像输出装置的方法包括:生成表征与图像输出装置相关联的多个漂移状态的图像输出装置的颜色特征图像的图像输出装置简档LUT(查找表); 生成表示LUT,L * a * b *值和多个GCR / UCR的增强基向量集合; 将所述一组基矢量存储在图像输出装置控制器中; 以及生成与所述图像输出设备的当前漂移状态相关联的图像输出设备活动轮廓,以转换由图像输出设备显示或打印的图像颜色数据,其中从所述一组基矢量生成所述图像输出设备活动简档。
Abstract:
This disclosure provides spot color control methods, apparatus and systems. According to one exemplary embodiment, disclosed is a method of generating device dependent color recipes for a plurality of printing devices. The method includes generating a first device dependent recipe for a target color for rendering on a first printing device, and generating a second device dependent recipe for the target color for rendering on a second printing device, whereby the second device dependent recipe is a function of the first device dependent color recipe.
Abstract:
What is disclosed is a novel system and method for updating a cluster model for color control. In one example embodiment, a cluster model is received and analyzed to identify clusters therein. Each of the identified clusters has an associated transform. Thereafter, in response to a threshold event having occurred, a critical cluster is identified and a critical color is identified from the cluster. Steps for identifying a critical color are more fully described herein. A selected number of patches is then printed in each of the critical colors and color measurements are obtained from the printed patches using, for instance, a colorimeter or spectrophotometer. If the color measurements have deviated beyond a defined threshold, then update the cluster model by: updating the transform associated with the cluster; redefining the number of clusters; redefining a center of any of the clusters; or redefining a boundary of the clusters.
Abstract:
What is disclosed is a video-based system and method for estimating heart rate variability from time-series signals generated from video images captured of a subject of interest being monitored for cardiac function. In a manner more fully disclosed herein, low frequency and high frequency components are extracted from a time-series signal obtained by processing a video of the subject being monitored. A ratio of the low and high frequency of the integrated power spectrum within these components is computed. Analysis of the dynamics of this ratio over time is used to estimate heart rate variability. The teachings hereof can be used in a continuous monitoring mode with a relatively high degree of measurement accuracy and find their uses in a variety of diverse applications such as, for instance, emergency rooms, cardiac intensive care units, neonatal intensive care units, and various telemedicine applications.
Abstract:
What is disclosed is system and method for contemporaneously reconstructing images of a scene illuminated with unstructured and structured illumination sources. In one embodiment, the system comprises capturing a first 2D image containing energy reflected from a scene being illuminated by a structured illumination source and a second 2D image containing energy reflected from the scene being illuminated by an unstructured illumination source. A controller effectuates a manipulation of the structured and unstructured illumination sources during capture of the video. A processor is configured to execute machine readable program instructions enabling the controller to manipulate the illumination sources, and for effectuating the contemporaneous reconstruction of a 2D intensity map of the scene using the second 2D image and of a 3D surface map of the scene using the first 2D image. The reconstruction is effectuated by manipulating the illumination sources.
Abstract:
What is disclosed is a computationally efficient system and method for estimating a subject's cardiac pulse rate from multi-channel source video data. In one embodiment, A time-series signal is continuously processed by repeatedly: (1) conditioning the estimated source signal obtained on a previous iteration to produce a next reference signal; (2) using this reference signal to perform constrained source separation on this next segment to obtain an estimated source signal. A frequency at which this next estimated source signal converged is the subject's estimated cardiac pulse rate for this signal segment. The reference signal is repeatedly updated. Upon convergence, the sliding window is shifted to define a next segment of the time-series signal. The method repeats for each time-series signal segment on a continuous basis or until a termination criteria is met. In such a manner, the subject's cardiac pulse rate is estimated from video data on a continuous basis.
Abstract:
What is disclosed is a non-contact system and method for determining cardiac function parameters from a vascular pattern identified from RGB and IR video signals captured simultaneously of a region of exposed skin of a subject of interest. In one embodiment, a video of a region of exposed skin is captured using a video camera that captures color values for pixels over visible channels and an IR camera that measures pixel intensity values in wavelength ranges of interest. Pixel intensity values are processed to generate a vascular binary mask that indicates pixel locations corresponding to the vascular pathways. The IR images are registered with corresponding data from the camera's visible channels such that pixels that correspond to the vascular pattern can be isolated in each frame of the video of visible color data. Once processed, pixels associated with the isolated vascular patterns are analyzed to determine desired cardiac function parameters.
Abstract:
What is provided are a novel system and method for generating a sensitivity matrix for adaptive color control in a color marking device. In one embodiment, a first and second color space is identified. A total of N intermediate components are identified. Component sensitivity matrices are calculated and a sensitivity matrix is generated using a chain rule of differentiation over each successive component sensitivity matrix. The present method facilitates calibration of dynamically varying color reproduction devices.
Abstract:
What is disclosed is a novel system and method for determining the number of persons in an IR image obtained using an IR imaging system. The present method separates a human from the surrounding background via a set of particularly formed intensity ratios. Quantities derived from these ratios and threshold values are used to selectively classify whether a pixel in the IR image is from a human or from a non-human. Based upon the classification of the various pixels in the IR image, the number of persons is determined. Various embodiments are disclosed.
Abstract:
What is disclosed is a novel system and method for xerographic Dmax control based upon measurements made on the printed paper using an inline spectrophotometer (ILS) or similar device. The disclosed method is based upon directly measuring the color to actuator sensitivity. Each of the separations is controlled independently using an actuator specific to that color separation. The present method is effective at controlling the color of the solid primaries. The fact that the vector of change is highly correlated with solid color variation seen in the field suggests that the teachings hereof effectively increase the solid color stability. Increased solid color stability increases the color stability throughout the printer gamut and the stability of the gamut boundaries, which increases the robustness of gamut mapping algorithms. Advantageously, the present method can be combined with existing ILS-based maintenance architectures.