-
公开(公告)号:US11236492B1
公开(公告)日:2022-02-01
申请号:US17002658
申请日:2020-08-25
Applicant: Built Robotics Inc.
Inventor: Noah Austen Ready-Campbell , Andrew Xiao Liang , Edward Jiachang Cai , Elizabeth Maitland Murdoch , Thomas Joel Pech , Lucas Allen Bruder , Gaurav Jitendra Kikani , Joonhyun Kim
IPC: E02F9/26 , G06F3/0481 , E02F9/20
Abstract: A computing device generates a graphical user interface displaying a three-dimensional representation of the site comprising a position of a vehicle capable of moving material within the site and a target location within the site for the vehicle to move material. The computing device transmits a set of instructions for the vehicle to move a volume of material from the target location. The computing device receives sensor data describing a depth of the target location, a current volume of material moved from the target location, and a position of the vehicle. The graphical user interface displayed on the computing device is modified to display the current depth of the target location, and the position of the vehicle relative to the target location. The computing device modifies the set of instructions based on the received sensor data and provides the modified set of instructions to the vehicle.
-
公开(公告)号:US20210191409A1
公开(公告)日:2021-06-24
申请号:US17198118
申请日:2021-03-10
Applicant: Built Robotics Inc.
Inventor: Noah Austen Ready-Campbell , Andrew Xiao Liang , Christian John Wawrzonek , Cyrus McMann Ready-Campbell , Gaurav Jitendra Kikani
Abstract: This description provides an autonomous or semi-autonomous excavation vehicle that is capable determining a route between a start point and an end point in a site and navigating over the route. The sensors collect any or more of spatial, imaging, measurement, and location data to detect an obstacle between two locations within the site. Based on the collected data and identified obstacles, the excavation vehicle generates unobstructed routes circumventing the obstacles, obstructed routes traveling through the obstacles, and instructions for removing certain modifiable obstacles. The excavation vehicle determines and selects the shortest route of the unobstructed and obstructed route and navigates over the selected path to move within the site.
-
公开(公告)号:US20210071385A1
公开(公告)日:2021-03-11
申请号:US16952060
申请日:2020-11-18
Applicant: Built Robotics Inc.
Inventor: Noah Austen Ready-Campbell , Andrew Xiao Liang , Linus Page Chou , Edward Stephen Walker, JR. , Christian John Wawrzonek , Cyrus McMann Ready-Campbell
Abstract: This description provides an autonomous or semi-autonomous excavation vehicle that is capable of navigating through a dig site and carrying out an excavation routine using a system of sensors physically mounted to the excavation vehicle. The sensors collects any one or more of spatial, imaging, measurement, and location data representing the status of the excavation vehicle and its surrounding environment. Based on the collected data, the excavation vehicle executes instructions to carry out an excavation routine. The excavation vehicle is also able to carry out numerous other tasks, such as checking the volume of excavated earth in an excavation tool, and helping prepare a digital terrain model of the site as part of a process for creating the excavation routine.
-
公开(公告)号:US20200291608A1
公开(公告)日:2020-09-17
申请号:US16817600
申请日:2020-03-12
Applicant: Built Robotics Inc.
Inventor: Noah Austen Ready-Campbell , Andrew Xiao Liang , Christian John Wawrzonek , Gaurav Jitendra Kikani , James Alan Emerick , Lucas Allen Bruder , Ammar Idris Kothari
Abstract: An excavation vehicle capable of autonomously actuating an excavation tool or navigating an excavation vehicle to perform an excavation routine within an excavation site is described herein. Sensors mounted to the excavation vehicle and the excavation tool produce signals representative of a position and orientation of the corresponding joint relative on the excavation vehicle relative to the excavation site, a position and orientation of the excavation vehicle relative to the excavation site, and one or more features of the excavation site based on the position of the excavation vehicle within the excavation site. A set of solenoids are configured to couple to corresponding hydraulic valves of the excavation tool to actuate the valve. A controller produces actuating signals to control the joints of the excavation tool to autonomously perform the excavation routine based on the signals produced by the sensors.
-
公开(公告)号:US10662613B2
公开(公告)日:2020-05-26
申请号:US15877223
申请日:2018-01-22
Applicant: Built Robotics Inc.
Inventor: Noah Austen Ready-Campbell , Andrew Xiao Liang , Linus Page Chou , Edward Stephen Walker, Jr. , Christian John Wawrzonek , Cyrus McMann Ready-Campbell
Abstract: This description provides an autonomous or semi-autonomous excavation vehicle that is capable of navigating through a dig site and carrying out an excavation routine using a system of sensors physically mounted to the excavation vehicle. The sensors collects any one or more of spatial, imaging, measurement, and location data representing the status of the excavation vehicle and its surrounding environment. Based on the collected data, the excavation vehicle executes instructions to carry out an excavation routine. The excavation vehicle is also able to carry out numerous other tasks, such as checking the volume of excavated earth in an excavation tool, and helping prepare a digital terrain model of the site as part of a process for creating the excavation routine.
-
公开(公告)号:US20180245317A1
公开(公告)日:2018-08-30
申请号:US15877223
申请日:2018-01-22
Applicant: Built Robotics Inc.
Inventor: Noah Austen Ready-Campbell , Andrew Xiao Liang , Linus Page Chou , Edward Stephen Walker, JR. , Christian John Wawrzonek , Cyrus McMann Ready-Campbell
Abstract: This description provides an autonomous or semi-autonomous excavation vehicle that is capable of navigating through a dig site and carrying out an excavation routine using a system of sensors physically mounted to the excavation vehicle. The sensors collects any one or more of spatial, imaging, measurement, and location data representing the status of the excavation vehicle and its surrounding environment. Based on the collected data, the excavation vehicle executes instructions to carry out an excavation routine. The excavation vehicle is also able to carry out numerous other tasks, such as checking the volume of excavated earth in an excavation tool, and helping prepare a digital terrain model of the site as part of a process for creating the excavation routine.
-
-
-
-
-