Abstract:
A compressible rope is disclosed comprising a plurality of strands. Interconnected outer strands form a sheath, and one or more inner strands form an inner core encased by the sheath. The inner core comprises a non-planar outer surface in contact with the sheath. The strands may be a monofilament or polyfilament material. The interaction between the non-planer outer surface of the core with the interior surface of the sheath can reduce bunching as well as the separation of the strands due to compressional forces.
Abstract:
A wirelessly controlled inflator is described herein that includes a pump, a hose, a programmable switch, and a wireless transceiver. The hose is fluidically coupled to the pump. The programmable switch is electrically coupled to the pump and stores instructions that, when executed, activate the pump until a desired pressure setting is reached. The wireless transceiver is electrically coupled to the programmable switch and relays pump operation information to the programmable switch. The inflator may be remotely controlled by one or more networked devices, such as directly or via a cloud-based network.
Abstract:
The invention is a motorized gearbox assembly. The motorized gearbox assembly includes a motor that drives an output shaft. The output shaft actuates a window covering by applying torque to a tilt rod of the window covering. The output shaft extends substantially an entire length of the motorized gearbox assembly. It also has a through-channel that extends substantially an entire length of the output shaft, so that the tilt rod can pass entirely through the motorized gearbox assembly. Because of this, the motorized gearbox assembly can be used for retrofitting blinds. In some embodiments, the motorized gearbox assembly has a diametrically polarized magnet driven by the output shaft, and a position encoder that measures the output shaft's position and number of rotations.
Abstract:
An apparatus includes a drum to draw in or let out a line and a motor and transmission coupled to the drum to apply a torque thereto. A power sensor measures an amount of current drawn and/or voltage supplied to the motor as the motor applies torque to the line. A processor calculates an amount of weight that is attached to the line based on the amount of power consumed by the motor. Alternatively, if the motor is operated in generator mode, a current sensor may measure an amount of current generated by the motor and the processor may calculate an amount of weight that is attached to the line based at least partly on an amount of current that is generated by the motor.
Abstract:
A system includes two or more lifting devices attached to a structure each lifting device having a drum rotated by a motor to draw in or let out a line from the drum. The drum includes a groove formed in an outer surface thereof to accommodate the line. In certain embodiments, each of the lifting devices are quickly and easily detachable from the structure by way of a flange and mounting bracket. The flange and mounting bracket have holes which are coaxially aligned. A pin or other fastener is used to join the flange and mounting bracket together. Two or more lifting devices may be connected to and moved along a mounting bracket.
Abstract:
An apparatus in accordance with the invention includes a gearbox assembly configured to electromechanically operate a window covering. A controller, incorporated into the window covering, is provided to control the gearbox assembly. A security device, such as a camera, motion sensor, audio sensor, proximity sensor, impact sensor, or the like, communicates with the controller and is configured to monitor security at a window associated with the window covering. Such a security sensor may, for example, monitor opening and/or closing of the window, breaking of the window, or the like. In certain embodiments, operation of the window covering is triggered in response to conditions sensed by the security device. A corresponding method is also disclosed herein.
Abstract:
An apparatus includes a drum to draw in or let out a line and a motor and transmission coupled to the drum to apply a torque thereto. Logistics electronics are mounted proximate a first end of the drum and power electronics are mounted proximate a second end of the drum. In general, the logistics electronics include lower power electronics that enable data processing as well as data and commands to be communicated to the apparatus from an external location. By contrast, the power electronics may include higher power electronics needed to receive power and drive the motor.
Abstract:
An apparatus includes a motor and a drum rotated by the motor to draw in or let out a line from the drum. The drum includes a groove formed in an outer surface thereof to accommodate the line. In certain embodiments, a depth of the groove is equal to or greater than a radius of the line. In the same or other embodiments, a passive guide that physically engages and tracks the groove may be used to guide the line into the groove.
Abstract:
An apparatus includes a drum to draw in or let out a line and a motor coupled to the drum to apply a torque thereto. The drum includes a groove formed in an outer surface thereof to accommodate the line. A roller is provided that tracks the groove and extends into the groove. The roller pushes the line into the groove. In certain embodiments, the roller pushes the line to a bottom of the groove to ensure that the line is properly seated therein.
Abstract:
An apparatus includes a drum to draw in or let out a line, and a motor and transmission coupled to the drum to apply a torque thereto. In certain embodiments, the motor and transmission are substantially entirely contained within the drum. In the same or other embodiments, a bearing may provide support for both the transmission and the drum.