Abstract:
An example printing cartridge includes a fluid container, a plurality of sensing locations in thermal contact with the fluid container, a voltage comparator to output time-based information based on a comparison of a sensed voltage generated at a selected sensing location of the plurality of sensing locations to a threshold voltage, the time-based information representative of whether a fluid is present at a fluid level associated with the selected sensing location, and a counter to convert the time-based information to a digital code based on a number of clock cycles.
Abstract:
An example device in accordance with an aspect of the present disclosure includes modules to generate an input signal, apply the input signal to an ink sample to obtain an ink signal, compare the ink signal to a reference value, and identify whether the ink signal is consistent with an ink signature. A module may be contained on an inkjet printhead die.
Abstract:
Systems and methods for evaluating the condition of a print nozzle are described. In one example, impedances across the print nozzle are measured. Subsequently, first test result and second test result are determined and registered at a first predetermined time instant and at a second predetermined time instant, respectively. The first test result and the second test result are obtained based on the measured impedances. Based on the first test result and the second test result, the condition of the print nozzle, is determined.
Abstract:
Methods to program a floating gate memory array include, in response to a request to program a second bit of the floating gate memory array, at a first time, outputting a programming voltage to cause a first node voltage at a first source of a first transistor corresponding to a first bit, wherein the first node voltage is greater than a second node voltage at a second source of a second transistor corresponding to the second bit. The method further includes at a second time, increasing the programming voltage of the floating gate memory array to program the second bit of the floating gate memory array.
Abstract:
An integrated circuit to drive a plurality of fluid actuation devices includes a status register, a plurality of interfaces, and control logic. The plurality of interfaces include a mode interface, a data interface, and a fire interface. The control logic enables reading of the status register in response to a signal on the mode interface transitioning to logic high with a logic high signal on the data interface, and transitioning a signal on the fire interface to logic high with the signal on the single data interface floating.
Abstract:
A fluid ejection controller interface includes input logic to receive control data packets and a first clock signal, each control data packet including a set of primitive data bits and a set of random bits, wherein the input logic identifies the random bits in the received control data packets to facilitate the creation of modified control data packets. The fluid ejection controller interface includes a clock signal generator to generate a second clock signal that is different than the first clock signal, and output logic to receive the modified control data packets, and output the modified control data packets to a fluid ejection controller of a fluid ejection device based on the second clock signal.
Abstract:
An integrated circuit to drive a plurality of fluid actuation devices includes an interface, a digital circuit, an analog circuit, and control logic. The digital circuit outputs a digital signal to the interface. The analog circuit outputs an analog signal to the interface. The control logic activates the digital circuit or the analog circuit.
Abstract:
A print component includes an array of fluidic actuation structures including a first column of fluidic actuating structures addressable by a set of actuation addresses, each fluidic actuating structure having a different one of the actuation addresses and having a fluidic architecture type, and a second column of fluidic actuating structures addressable by the set of actuation addresses. Each fluidic actuating structure of the second column has a different one of the actuation addresses and has a same fluidic architecture type as the fluidic actuating structure of the first column having the same address. An address bus communicates the set of addresses to the array of fluidic actuating structures, and a fire signal line communicates a plurality of fire pulse signal types to the array of fluidic actuating structures, the fire pulse signal type depending on the actuation address on the address bus.
Abstract:
An integrated circuit to drive a plurality of fluid actuation devices includes a status register, a plurality of interfaces, and control logic. The plurality of interfaces include a mode interface, a data interface, and a fire interface. The control logic enables reading of the status register in response to a signal on the mode interface transitioning to logic high with a logic high signal on the data interface, and transitioning a signal on the fire interface to logic high with the signal on the single data interface floating.
Abstract:
An integrated circuit to drive a number of fluid actuation devices, comprising a circuit configured to have a memory access state which can be set to one of an enabled state and disabled state. The integrated circuit to include a fluid actuation circuit to transmit selection information for a fluid actuation device, the selection information comprising a data state bit. The integrated circuit to include a memory cell array, configured so that each memory cell is accessible by the memory access state being enabled, and the data state bit being set.