METHODS AND SYSTEM FOR PERFORMING HANDOVER IN A WIRELESS COMMUNICATION SYSTEM

    公开(公告)号:US20210084548A1

    公开(公告)日:2021-03-18

    申请号:US17108532

    申请日:2020-12-01

    Abstract: A method and system for performing handover in a third generation (3G) long term evolution (LTE) system are disclosed. A source evolved Node-B (eNode-B) makes a handover decision based on measurements and sends a handover request to a target eNode-B. The target eNode-B sends a handover response to the source eNode-B indicating that a handover should commence. The source eNode-B then sends a handover command to a wireless transmit/receive unit (WTRU). The handover command includes at least one of reconfiguration information, information regarding timing adjustment, relative timing difference between the source eNode-B and the target eNode-B, information regarding an initial scheduling procedure at the target eNode-B, and measurement information for the target eNode-B. The WTRU then accesses the target eNode-B and exchanges layer 1/2 signaling to perform downlink synchronization, timing adjustment, and uplink and downlink resource assignment based on information included in the handover command.

    METHOD AND APPARATUS FOR MAINTAINING UPLINK SYNCHRONIZATION AND REDUCING BATTERY POWER CONSUMPTION

    公开(公告)号:US20200351809A1

    公开(公告)日:2020-11-05

    申请号:US16935035

    申请日:2020-07-21

    Abstract: A Node-B sends a polling message to a wireless transmit/receive unit (WTRU). The WTRU sends an uplink synchronization burst in response to the polling message without contention. The Node-B estimates an uplink timing shift based on the synchronization burst and sends an uplink timing adjustment command to the WTRU. The WTRU then adjusts uplink timing based on the uplink timing adjustment command. Alternatively, the Node-B may send a scheduling message for uplink synchronization to the WTRU. The WTRU may send a synchronization burst based on the scheduling message. Alternatively, the WTRU may perform contention-based uplink synchronization after receiving a synchronization request from the Node-B. The WTRU may enter an idle state instead of performing a handover to a new cell when the WTRU moves to the new cell. A discontinuous reception (DRX) interval for the WTRU may be set based on activity of the WTRU.

    DYNAMIC RESOURCE ALLOCATION, SCHEDULING AND SIGNALING FOR VARIABLE DATA RATE SERVICE IN LTE

    公开(公告)号:US20200163102A1

    公开(公告)日:2020-05-21

    申请号:US16773569

    申请日:2020-01-27

    Abstract: A method and apparatus are provided for dynamic resource allocation, scheduling and signaling for variable data real time services (RTS) in long term evolution (LTE) systems. Preferably, changes in data rate for uplink RTS traffic are reported to an evolved Node B (eNB) by a UE using layer 1, 2 or 3 signaling. The eNB dynamically allocates physical resources in response to a change in data rate by adding or removing radio blocks currently assigned to the data flow, and the eNB signals the new resource assignment to the UE. In an alternate embodiment, tables stored at the eNB and the UE describe mappings of RTS data rates to physical resources under certain channel conditions, such that the UE uses the table to locally assign physical resources according to changes in UL data rates. Additionally, a method and apparatus for high level configuration of RTS data flows is also presented.

    Method and apparatus for selecting multiple transport formats and transmitting multiple transport blocks simultaneously with multiple H-ARQ processes

    公开(公告)号:US10547432B2

    公开(公告)日:2020-01-28

    申请号:US15988737

    申请日:2018-05-24

    Abstract: A method and apparatus for selecting multiple transport formats and transmitting multiple transport blocks (TBs) in a transmission time interval simultaneously with multiple hybrid automatic repeat request (H-ARQ) processes in a wireless communication system are disclosed. Available physical resources and H-ARQ processes associated with the available physical resources are identified and channel quality of each of the available physical resources is determined. Quality of service (QoS) requirements of higher layer data to be transmitted are determined. The higher layer data is mapped to at least two H-ARQ processes. Physical transmission and H-ARQ configurations to support QoS requirements of the higher layer data mapped to each H-ARQ process are determined. TBs are generated from the mapped higher layer data in accordance with the physical transmission and H-ARQ configurations of each H-ARQ process, respectively. The TBs are transmitted via the H-ARQ processes simultaneously.

Patent Agency Ranking