Abstract:
Medical monitoring and treatment apparatus, which is controlled by a plurality of control sources, includes a “personal medical device” (PMD) or an “implantable medical device” (IMD), respectively carried by, or implanted in, a patient. The PMD/IMD is alternatively self-controlled or controlled by one or more local external control stations, at or near the location of the patient, and/or one or more remote external control stations, remote from the patient. Either or both of the local and remote stations may be operated by a person, such as the patient, a patient facilitator and/or a medical professional, or the stations may operate automatically. Since the device is controlled by multiple sources, hierarchies are used to select the source of control.
Abstract:
A battery-powered trigger-locking device, which is configured to be disposed on a gun with a trigger for firing, includes a data receiver, a data memory and a logic device for determining whether data received by the receiver is the same, or substantially the same, as data stored in the memory. If a data match is indicated, the logic device causes an electromagnetic device to move a trigger-locking member to an unlocked position, permitting the gun to be fired. A separate electronic gun key is provided to transmit gun unlock data to the data receiver of the trigger-locking device. This gun unlock data may be a password, a long pseudo-random number or biologic data identifying the gun owner or some other person who is licensed or otherwise authorized to fire the gun.
Abstract:
An electronic medical monitoring and treatment apparatus allows a victim of a medical emergency person access to a medical professional (MP) who can monitor, diagnose and treat the person from a remote site. The apparatus includes a cardiac medical monitoring and treatment device (MMTD) coupled to an electronic adapter designed to communicate with a local, first transmitting/receiving (T/R) device which, in turn, is adapted to electronically communicate with a remote, second transmitting/receiving (T/R) device used by the MP. The MMTD may comprise a cardiac treatment circuit for effecting cardiac pacing and/or defibrillation and a cardiac signal circuit for receiving cardiac signals. The cardiac signals are (1) transmitted from the signal circuit to the second T/R device for evaluation by the MP, (2) the MP may transmit a control signal to the treatment circuit, and (3), in response thereto, the treatment circuit may generate one or more electrical pulses for treatment of the person.
Abstract:
A battery-powered trigger-locking device, which is configured to be disposed on a gun with a trigger for firing, includes a data receiver, a data memory and a logic device for determining whether data received by the receiver is the same, or substantially the same, as data stored in the memory. If a data match is indicated, the logic device causes an electromagnetic device to move a trigger-locking member to an unlocked position, permitting the gun to be fired. A separate electronic gun key is provided to transmit gun unlock data to the data receiver of the trigger-locking device. This gun unlock data may be a password, a long pseudo-random number or biologic data identifying the gun owner or some other person who is licensed or otherwise authorized to fire the gun.
Abstract:
An implantable medical device (IMD) comprises a transmitting/receiving (T/R) device for transmitting medical data sensed from a patient to, and for receiving control signals from, a medical expert (a human medical professional and/or a computerized expert system) at a remote location; an electronic medical treatment device for treating the patient in response to control signals applied thereto; and a sensor circuit, having a sensor circuit output, for producing sensor circuit output signal(s) representing medical data sensed from the patient. The IMD also includes logic device which analyzes the sensor circuit output signal(s) to detect a medical abnormality and, upon detecting an abnormality, either sends a notification signal representing a medical state of said patient to the medical expert at the remote location or sends a local treatment device control signal to the medical treatment device, or does both.
Abstract:
An electronic medical person access to a medical professional (MP) who can monitor, diagnose and treat the person from a remote site. The apparatus includes a plurality of medical treatment devices coupled to an electronic adapter designed to communicate with (A) each treatment device and (B) a local, first transmitting/receiving device which, in turn, is adapted to electronically communicate with a remote, second transmitting/receiving device used by the MP. Signals representing physiologic information of the person via the adapter to the MP and, in response, the MP may transmit a control signal to one or more treatment devices. The treatment devices may communicate via the adapter.
Abstract:
An implantable medical device (IMD) comprises a transmitting/receiving (T/R) device for transmitting medical data sensed from a patient to, and for receiving control signals from, a medical expert (a human medical professional and/or a computerized expert system) at a remote location; an electronic medical treatment device for treating the patient in response to control signals applied thereto; and a sensor circuit, having a sensor circuit output, for producing sensor circuit output signal(s) representing medical data sensed from the patient. The IMD also includes logic device which analyzes the sensor circuit output signal(s) to detect a medical abnormality and, upon detecting an abnormality, either sends a notification signal representing a medical state of said patient to the medical expert at the remote location or sends a local treatment device control signal to the medical treatment device, or does both.
Abstract:
A method and apparatus for identifying the writer of a document, where identifying information for each of a plurality of registered human individuals is stored in a database, calls for capturing local images of an individual making writings and/or keyboard entries and determining whether the individual making these writings and/or keyboard entries is the same as one of the registered individuals whose identifying information is stored in the database. The identifying information stored in the database includes both an alphanumeric identifier and an image of a unique, visually observable biologic identifier on a body portion of each registered individual. The local images include both: (i) the making of the writings and/or keyboard entries by the individual whose identifying information may be stored in the database; and (ii) a body portion of this same individual on which is visible the biologic identifier.
Abstract:
A method and system are disclosed for assessing the capability of a pilot to operate an aircraft. The system senses the value of at least one operator information parameter for assessing the fitness of the pilot operating the aircraft and at least one aircraft information parameter relating to the position and motion of the aircraft. The operator information parameters include electroencephalogram information, electrocardiogram information, heart rate information, respiratory rate information, eye motion information, eyelid position information, eyelid motion information, expired gas mixture information, blood oxygen content information, blood oxygen saturation information and blood pressure information for the person operating the aircraft, and/or information about actions taken by the person operating the aircraft. Based on these parameters, the system determines if the pilot is capable of properly operating the aircraft and, if not, control of the aircraft is assumed by an alternate source of control which lands the aircraft safely.
Abstract:
A method for policing and managing the operation of a flying, unmanned aircraft in the event of usurpation of control of, malfunction of, or ill-intentioned use of, this aircraft includes the steps of (a) detecting inappropriate operation of the aircraft; (b) transmitting a takeover command to the aircraft to interrupt control of the operation of this aircraft by a first pilot and relinquish control of the aircraft to a second pilot; and (c) transmitting control commands to the aircraft to control its operation by the second pilot, until the need for alternate pilot control of the aircraft has ended or until the aircraft has landed safely.