Abstract:
An elastic device includes a first elastic supporter; a second elastic supporter and a carbon nanotube film. The second elastic supporter is spaced from the first elastic supporter. The carbon nanotube film has a first side fixed on the first elastic supporter and a second side opposite to the first side and fixed on the second elastic supporter. The carbon nanotube film includes a plurality of first carbon nanotubes orientated primarily along a first direction and a plurality of second carbon nanotubes having orientations different from the first direction. At least one portion of each of the second carbon nanotubes contacts with at least two adjacent first carbon nanotubes. The carbon nanotube film is capable of elastic deformation along a second direction that is substantially perpendicular to the first direction.
Abstract:
A pacemaker lead includes a body and an insulation layer. The body includes at least one carbon nanotube yarn. The at least one carbon nanotube yarn includes a plurality of carbon nanotubes. The carbon nanotubes are interconnected along an axis of the body by van der Waals force. The insulation layer covers an outer surface of the body.
Abstract:
A method for vertically grounding and leading down form a center of a composite pole tower includes the following steps: extending a ground down-leading wire from a center of a ground wire cross arm which is made of metal and is positioned on top of the pole tower, wherein the ground down-leading wire is vertically leaded down to the earth form the center of the composite pole tower, wherein when an lower portion of the tower body is a metal pipe, the ground down-leading wire is extended from the center of the composite material and is directly connected to the metal pipe. The method utilizes the advantage of the insulating intensity of the wall of the composite pole tower and enhances the insulating intensity of the transmission line on impact of lightning. The ground down-leading wires are prevented from short-circuiting with the tower body of the composite pole tower, so that advantage of the insulating property of the composite material of the pole towers is realized. Since the ground down-leading wire is penetrated through center of the pole tower, so that the ground down-leading wires are not exposed and are prevented from destroying by external force. And also the method is easy and simple for application.
Abstract:
A carbon nanotube film includes a plurality of carbon nanotube strings and one or more carbon nanotubes. The plurality of carbon nanotube strings are separately arranged and located side by side. Distances between adjacent carbon nanotube strings are changed when a force is applied. One or more carbon nanotubes are located between adjacent carbon nanotube strings.
Abstract:
A wide-band balun device includes a first metallization deposited over a substrate and oriented in a first coil. The first coil extends horizontally across the substrate while maintaining a substantially flat vertical profile. A second metallization is deposited over the substrate and oriented in a second coil. The second coil is magnetically coupled to the first coil and a portion of the second coil oriented interiorly of the first coil. A third metallization is deposited over the substrate and oriented in a third coil. The third coil is magnetically coupled to the first and second coils. A first portion of the third coil is oriented interiorly of the second coil. The third coil has a balanced port connected to the third coil between second and third portions of the third coil.
Abstract:
A method for vertically grounding and leading down form an inner side of a composite pole tower and pole tower thereof, wherein the method includes the following steps: extending an upper metal cross arm from an extended line of at least one side of a ground wire cross arm which is made of metal, vertically leading down a ground down-leading wire from a distal end of the upper metal cross arm, connecting the ground down-leading wire to the pole tower via a lower metal cross arm at a distance under a lower lead, and grounding the ground down-leading wire along a tower body of the pole tower, wherein when an lower portion of the tower body is a metal pipe, the ground down-leading wire is selectively directly connected to the metal pipe via the lower metal cross arm. The upper metal cross arm and the lower cross arm are able to provide a distance between the ground down-leading wire and the pole tower. The method enhances the ability of bearing lightning flashover, increases the insulating intensity to lightning impact, and prevents burning to composite insulator by power-flow current after lightning flash over. And also the method is easy and simple for application.
Abstract:
A method for vertically grounding and leading down form an outer side of a composite pole tower and pole tower thereof, wherein the method includes the following steps: extending an upper metal cross arm from an extended line of at least one side of a ground wire cross arm, vertically leading down a ground down-leading wire from a distal end of the upper metal cross arm, connecting the ground down-leading wire to the pole tower via a lower metal cross arm at a distance under a lower lead, and grounding the ground down-leading wire along a tower body of the pole tower, wherein when an lower portion of the tower body is a metal pipe, the ground down-leading wire is selectively directly connected to the metal pipe via the lower metal cross arm. The method facilitates in compressing the width of the transmission corridor to a maximum extent as well as designing a lightning protection, preventing the ground down-leading wire from short-circuiting with the tower body, and realizing the insulation function of the composite material tower body. The manner of using unilateral ground down-leading wire saves material, and is economical and simple in structure.
Abstract:
Methods and systems to configure and/or reconfigure measurement configuration in wireless communications with one or more cells are disclosed. Measurement configuration reporting may be reconfigured based on events associated with the one or more serving cells and/or one or more serving component carriers, among others. Measurement configuration and measurement configuration reporting may also be reconfigured based on events associated with one or more serving component carriers.
Abstract:
This invention discloses a power device package for containing, protecting and providing electrical contacts for a power transistor. The power device package includes a top and bottom lead frames for directly no-bump attaching to the power transistor. The power transistor is attached to the bottom lead frame as a flip-chip with a source contact and a gate contact directly no-bumping attaching to the bottom lead frame. The power transistor has a bottom drain contact attaching to the top lead frame. The top lead frame further includes an extension for providing a bottom drain electrode substantially on a same side with the bottom lead frame. In a preferred embodiment, the power device package further includes a joint layer between device metal of source, gate or drain and top or bottom lead frame, through applying ultrasonic energy. In another embodiment, a layer of conductive epoxy or adhesive, a solder paste, a carbon paste, or other types of attachment agents for direct no-bumping attaching the power transistor to one of the top and bottom lead frames.
Abstract:
A power semiconductor device package includes a conductive assembly including a connecting structure and a semiconductor die having an aperture formed therethrough, the aperture being sized and configured to spacedly receive the connecting structure. In an alternative embodiment, a power semiconductor device package includes a conductive assembly including a connecting structure and a pair of semiconductor die disposed on either side of the connecting structure in spaced relationship thereto.