Abstract:
Embodiments described herein include a method for operating an input device by applying a charge voltage to a sense element through a first transistor that is between the sense element and a column output line and a first switch that is between the column output line and a drive voltage. The method also includes storing an electric charge on the sense element, wherein the electric charge comprises a magnitude corresponding to a feature of an input object. The method also includes driving a gate terminal of the first transistor low and disconnecting the charge voltage via the first switch. The method further includes transferring the electric charge to a feedback capacitor.
Abstract:
A method for capacitive sensing includes acquiring a mutual capacitive measurement including effects of sensing signals of a sensing region, and acquiring an absolute capacitive measurement including effects of the sensing signals. The method further includes performing a comparison of the mutual capacitive measurement and the absolute capacitive measurement, and detecting a presence of an input object proximate to a side surface of an input device based on the comparison. The side surface is at least substantially orthogonal to the sensing region on the input device. The method further includes reporting the presence of the input object.
Abstract:
Embodiments described herein include an input device, a display device having a capacitive sensing device, a processing system and a method for detecting presence of an input object using a capacitive sensing device. In one embodiment, an input device includes a plurality of sensor electrodes arranged in a planar matrix array. Each sensor electrode is coupled to unique routing trace and has an identical geometric plan form that is symmetrical about a center of area of the sensor electrode. The geometric plan form of each sensor electrode includes core and a plurality of protrusions extending outward from the core. The protrusions are configured to overlap with protrusions extending outward from each adjacent sensor electrode of the matrix array.
Abstract:
Embodiments described herein include a method and apparatus for capacitive sensing in input devices integrated with a display device. In one embodiment, a processing system for a display device comprising an integrated capacitive sensing device is provided that includes a display driver module, a transmitter module, and a receiver module. The display driver and transmitter modules are configured to operate in a display update mode and a sleep mode. The receiver module is configured to, while operating in a doze mode, communicate with and trigger the transmitter module to enter the active sensing mode while the display driver module remains in the sleep mode when presence of an object is detected based on the resulting signals.
Abstract:
An example display device includes an active portion having a plurality of display electrodes, an inactive portion, a plurality of source lines disposed at least partially in the active portion, and a plurality of routing traces. The routing traces include a first routing trace, at least a first portion thereof being disposed in a first metal layer, parallel to a first source line of the plurality of source lines and in the active portion. The routing traces further include a second routing trace, a first portion thereof disposed parallel to the first routing trace in the first metal layer and in the active portion, a second portion of the second routing trace disposed in a second metal layer in the inactive portion and crossing the first routing trace, the second routing trace coupled to a first display electrode of the plurality of display electrodes through a first via.
Abstract:
A processing system, input device, and method are disclosed to detect an active input device. The method includes operating a first portion of a plurality of sensor electrodes to receive an active input signal from an active input device, and operating a second portion of the plurality of sensor electrodes to receive capacitive sensing data corresponding to a passive input device. The first and second portions include at least one sensor electrode in common. The method also includes driving a plurality of display electrodes to update a display image, wherein the plurality of sensor electrodes includes at least one of the plurality of display electrodes.
Abstract:
Examples of the present disclosure generally provide a processing system for a display device including an integrated capacitive sensing device. The processing system includes a sensor module configured to be coupled to a plurality of sensor electrodes. Each sensor electrode includes at least one display electrode. The sensor module drives the plurality of sensor electrodes for capacitive sensing during a first period. The processing system further includes a display driver configured to drive display signals onto the display electrodes during a second period. The display signals are based on a reference voltage, and the first period and the second period are at least partially overlapping. The processing system further includes a power supply configured to provide the reference voltage to the display driver. The power supply includes a resonator circuit having an inductor connected in parallel with a capacitor and configured to modulate the reference voltage.
Abstract:
An electrode matrix that is used for capacitive sensing may be integrated into a display panel of an input device. In one embodiment, source drivers may be mounted on the display panel which drive the display signals and capacitive sensing signals into the display panel. In one embodiment, the capacitive sensing signals may be routed on wires or lines that are interleaved on the same layer as the source lines used for setting a voltage on the pixels in the display panel during display updating. Using the interleaved wires, the source drivers may drive the capacitive sensing signals in parallel to a plurality of the electrodes in the matrix in a predefined pattern that spans one or more touch cycles.
Abstract:
Embodiments of the present invention generally provide an input device including a display device having an integrated capacitive sensing device. The input device includes a plurality of source lines, a plurality of routing traces coupled to a plurality of sensor electrodes, and a processing system. The processing system is configured to update a first sub-pixel coupled to a first source line by driving the first source line with a first voltage. The processing system is further configured to drive one or more routing traces included in the plurality of routing traces with a second voltage that is an inverted version of the first voltage. The processing system is further configured to receive resulting signals from at least one sensor electrode via the one or more routing traces while the one or more routing traces are driven with the second voltage, and determine positional information based on the resulting signals.
Abstract:
Embodiments of the invention generally provide an input device with display screens that periodically update (refresh) the screen by selectively driving electrodes corresponding to pixels in a display line, while also using the display screen as a touch area for capacitive sensing. To do this, the input device uses common electrodes for both updating the display and performing capacitive sensing, and interleaves periods of capacitive sensing between periods of updating the display lines (and pixels) based on a display frame. To avoid noise and mitigate interference during capacitive sensing, the input device may switch which windows of time in a display frame are used as capacitive sensing periods based on measurements of interference.