Abstract:
A base station includes a controller configured to map initial access signals, each initial access signal corresponding to one of a plurality of transmit beams, to a subset or all of a plurality of predefined time locations in at least one periodicity, and a transmitter configured to transmit the mapped initial access signals to a UE and indicate OFDM symbols that are not mapped with the initial access signals in the one periodicity to the UE. A UE includes a transceiver configured to receive initial access signals mapped to a subset or all of time locations in one periodicity from a base station, the each initial access signal corresponding to one of a plurality of different beams, and a controller configured to perform an initial access to the base station and receive the indication of OFDM symbols that are not mapped with the initial access signals in the one periodicity.
Abstract:
A base station (BS) capable of communication with a number of transmission points includes a processor configured to control a beamforming transmission or reception and an integrated antenna array system. The integrated antenna array system includes a baseband signal processing unit configured to perform baseband functions and disposed between the two sections. The integrated antenna array system also includes a plurality of physical antenna elements disposed in groups. Each of the groups includes an equal number of the plurality of physical antenna elements. The plurality of physical antenna elements are disposed symmetrically around the baseband signal processing unit.
Abstract:
A base station capable of communicating with a user equipment (UE) includes a transceiver configured to transmit 8-port Channel State Information-Reference Signal (CSI-RS) according to a CSI-RS configuration for the UE, and downlink signals containing the CSI-RS configuration on physical downlink shared channels (PDSCH), and receive, from the UE, uplink signals containing Precoder Matrix Indicator (PMI) derived using the 8-port CSI-RS, and a controller configured to convert the PMI to one of predetermined precoding vectors. A user equipment includes a transceiver configured to receive downlink signals containing a CSI-RS configuration on PDSCH transmitted by the BS, and 8-port CSI-RS according to the CSI-RS configuration, and transmit uplink signals containing a PMI, a controller configured to decode the CSI-RS configuration from the downlink signals, and derive the PMI by utilizing channel estimates based on the 8-port CSI-RS, the PMI mapped to one of precoding vectors.
Abstract:
Scalable channel state information feedback for FD-MIMO involves quantizing the downlink channel according to a finite set of basis vectors to reduce the number of coefficients quantized and reported from a user equipment to a base station. The procedure includes measurement at the base station of angle of arrival spread for uplink signal reception from the user equipment and signaling that spread to the user equipment. The user equipment then quantizes the MIMO channel according to a sub-scheme configured based upon the signaled spread and reports (feeds back) the quantized channel to the base station.
Abstract:
A base station includes a transceiver, and a processor operatively coupled to the transceiver. The processor is configured to estimate a mobility level of a user equipment (UE), and determine whether the estimated mobility level of the UE exceeds a speed threshold. The processor is also configured to generate, from a channel response prediction model, a future channel response prediction based on the estimated mobility level of the UE and whether the estimated mobility of the UE exceeds the speed threshold.
Abstract:
Methods and apparatuses for canonical model (CM) based channel status information enhancement. A base station includes a transceiver configured to receive a reference signal from a user equipment (UE) and a processor operably coupled to the transceiver. The processor is configured to perform a linear transformation based on the received reference signal, select a basis set based on the linear transformation, select a set of kernels based on the selected basis set and the linear transformation, and reconstruct a channel based on the selected set of kernels.
Abstract:
A method includes determining estimated features comprising second order statistics based on at least one received signal. The method also includes classifying, using a machine learning network, each channel of the at least one received signal into a channel profile based on the estimated features. The method also includes obtaining multiple minimum mean square error (MMSE) channel estimation weights from a database based on the estimated features, the database storing (i) representative MMSE estimation weights and (ii) channel cluster representatives indexed by the estimated features. The method also includes applying a respective MMSE channel estimation weight for each channel.
Abstract:
A base station (UE) is configured to perform a computer-implemented method for antenna fault detection and correction. The computer-implemented method includes acquiring one or more sounding reference signals (SRSs) received from at least one gNB antenna; detecting an antenna failure based on the one or more SRSs; estimating a noise power based on the antenna failure and a history of received SRSs; detecting a missing SRS based on the noise power and the history of received SRSs; and handling the missing SRS. Handling the missing SRS is based on performing at least one of: replacing an SRS measurement with a predicted SRS value for the missing SRS when the predicted SRS is available; or avoiding use of the missing SRS in a sequential SRS prediction when the predicted SRS is unavailable.
Abstract:
A base station includes a controller configured to configure an MRS resource set comprising a group of MRS resources, each MRS resource comprising a set of MRS antenna ports. If at least two MRS antenna ports belong to a same MRS resource, then the at least two MRS antenna ports are quasi co-located with respect to a first set of QCL parameters, else if the at least two MRS antenna ports belong to a same MRS resource set, then the at least two MRS antenna ports are quasi co-located with respect to a second set of QCL parameters, and else the at least two MRS antenna ports are not quasi co-located with respect to either the first set or the second set of QCL parameters. The MRS is a CSI-RS for estimating a CSI and at least one of the first set and the second set of QCL parameters.
Abstract:
Methods and apparatuses for a channel estimation and prediction operation in a wireless communication systems. A method of a BS comprises: receiving an SRS; partitioning, based on a partition policy, a frequency band of the SRS into sub-bandwidths in a frequency domain; generating, based on previously stored CSI in memory and the partition policy, a set of chunks corresponding to respective sub-bandwidths; performing CHPD operations corresponding to the respective sub-bandwidths to generate channel parameters, wherein different CHPD operations are applied to the respective sub-bandwidths; combining the channel parameters predicted from the respective sub-bandwidths in the frequency domain; and performing, based on the combined channel parameters, a channel estimation and prediction operation.