Abstract:
A method for determining wire connections in a vapor compression system (1) is disclosed. The vapor compression system comprises a compressor, a condenser, an expansion device (2) and an evaporator (3) being fluidly interconnected in a refrigerant path, and two or more sensor devices (7, 8, 9, 10, 11) arranged for measuring variables which are relevant for the operation of the vapor compression system (1). The method comprises the steps of changing an operational setting, e.g. an opening degree of the expansion device (2) for the vapor compression system (1), monitoring variable values, such as temperatures, being measured by at least two sensor devices (7, 8, 9, 10, 11), e.g. arranged at various positions of the vapor compression system (1), in response to said changed operational setting, comparing the measured variable values to expected behavior of at least one variable measured by a sensor device (7, 8, 9, 10, 11) in response to said changed operational setting, and based on the comparing step, determining at least one wire connection of the vapour compression system (1). The method allows correct wire connections to be established without any special effort from the installing personnel, and without requiring rewiring of the system.
Abstract:
A method for attaching an object, such as a sight glass (3) or an electrical connector (4), to a structure, such as a valve housing (1), the object (3, 4) comprising an annular flange (6, 11). The object (3, 4) is mounted in an opening (7, 12) of the structure (1) with the annular flange (6, 11) in abutment with an annular edge (8, 13) of the opening (7, 12). The object (3, 4) is attached to the structure (1) by performing welding of the annular edge (8, 13) and the annular flange (6, 11) and displacing the welding beam along the annular flange (6, 11).
Abstract:
One exemplary embodiment of this disclosure relates to a centrifugal refrigerant compressor system. The system includes a condenser, an evaporator, and an economizer between the condenser and the evaporator. The system further includes a centrifugal compressor having a first impeller and a second impeller downstream of the first impeller. The compressor includes at least one port. Fluid from a recirculation flow path and an economizer flow path is introduced into a main flow path of the compressor by way of the at least one port.
Abstract:
The invention provides a liquid treatment apparatus such as a reverse osmosis apparatus wherein a portion of an inlet liquid permeates through a filter or a membrane e.g. to provide freshwater from saltwater. The apparatus comprises a pump which provides the necessary pressure of the liquid to drive the permeation process, and a recovery unit which transfers pressure of a residue quid to the inlet liquid. The pump and the recovery unit are driven at synchronous and variable speed to control the output and thereby e.g. to adjust for fouling of the filter or membrane. The invention further provides methods of controlling the synchronous speed, e.g. based on a pressure or based on the consumption of the produced liquid.
Abstract:
A pump arrangement (1) is provided comprising a driving shaft (2), cylinder drum means (3a, 3b) fixed to said shaft (2) in rotational direction and having a plurality of cylinders (6a, 6b), and a piston (7a, 7b) in each cylinder, each piston (7a, 7b) having a slide shoe (8a, 8b) in contact with driving surface means (8a, 8b). Such a pump arrangement should produce a pressure with low undulations. To this end said cylinder drum means (3a. 3b) comprise at least a first cylinder drum (3a) and a second cylinder drum (3b), said cylinder drums (3a, 3b) being fixed to said common shaft (2) in rotational direction, wherein the cylinder drums (3a, 3b) are offset with respect to each other in rotational direction.
Abstract:
The present invention relates to a method and a system to reduce losses of energy due to ripples, especially at the power grid, the ripples being short term power shortages or excess power. The method is based on the idea of shutting off energy consuming devices during a period of power shortage, if their operation is not necessary, and optionally to turn on such energy consuming devices during periods of excess power, if energy may be stored in them, especially when energy may be stored as some physical parameter or variable, being a part of the operation of the energy consuming devices, such as the temperature of a freezer.
Abstract:
An expansion valve having an inlet opening, at least one outlet opening and first and second valve parts. The inlet opening is adapted to receive fluid medium in a liquid state. The outlet opening(s) is/are adapted to deliver fluid medium in an at least partly gaseous state to a flow path. The valve parts are arranged movable relative to each other such that the mutual position of the valve parts determines a fluid flow between the inlet opening and the outlet opening(s). During normal operation, a resulting force acts upon the first valve part and/or the second valve part to press the first and second valve parts towards each other. The expansion valve having ability for reducing the resulting force acting upon the valve part(s). Thereby the valve parts can easier be moved relative to each other, and the force required in order to operate the valve is thereby reduced.
Abstract:
An expansion device unit (4) for a vapor compression system (1), and a vapor compression system (1) are disclosed. The expansion device unit (4) comprises an inlet opening (17) arranged to receive fluid medium, at least two outlet openings (18) arranged to deliver fluid medium, a main expanding section (6) adapted to expand fluid medium received via the inlet opening (17) before delivering the fluid medium to the outlet openings (18), and a distribution section (7) arranged to split the fluid flow received via the inlet opening (17) into at least two fluid flows to be delivered via the outlet openings (18). The main expanding section (6) and/or the distribution section (7) is/are arranged to cause pressures in fluid delivered via at least two of the outlet openings (18) to be distinct. The main expanding section (6) is operated on the basis of one or more parameters measured in the fluid flow delivered by one of the outlet openings (18). The distinct pressure levels allow distinct evaporating temperature in evaporator paths (5a, 5b, 5c) connected to the outlet openings (18). Thereby a large temperature difference between inlet temperature and outlet temperature of a secondary fluid flow across the evaporator (5) can be obtained, without requiring that the entire mass flow must be compressed from a low pressure level by the compressor (2). Thereby energy is conserved.