Abstract:
A capacitance touch sensor includes a square wave generator for generating a square wave clock, a sensor panel for receiving the square wave clock and then generating a panel signal, a peak detector for receiving the panel signal and then generating an analog peak signal, an analog-to-digital converter for receiving the analog peak signal and then generating a digital peak signal, and a control unit for receiving the digital peak signal and generating a detection signal according to a level of the digital peak signal to indicate whether the sensor panel is touched or not.
Abstract:
A method for near field communication with a serial transmission microcontroller and an NFC tag device using the same are provided in the present invention. The method includes: providing a serial interface microcontroller; capturing an NFC carrier signal from an NFC LC resonant circuit; performing a frequency division to the NFC carrier signal to obtain a NFC clock signal; filtering the NFC carrier signal from the NFC LC resonant circuit to obtain an envelope signal; sequentially receiving a digital sequence of the envelope signal according to triggering of the NFC clock signal based on a serial transmission protocol; and decoding an NFC data from the digital sequence based on an NFC transmission protocol rule.
Abstract:
A decoder for a wireless charging transmitter and a wireless charging transmitter using the same are provided in the present invention. In order to adapt the wide range of the received signal from the wireless charging receiver, which usually results in the error of the decode, the feedback circuit of the wireless charging transmitter is changed, so that the signal in a certain swing is amplified by an original gain, and the signal out of the certain swing is amplified by a limited gain. Therefore, the amplified signal is able to show the characteristic of the original received signal. Thus, the accuracy of decoding is increased.
Abstract:
The invention relates to a system for development interface and a data transmission method for development interface. The system includes a development board and a host computer. The development board is electrically connected to the host computer by a debug interface. The data format transmitted by host computer includes a header field, an address field and a data field. When performing mass data transfer, a specific command is set in the header field to lift the restriction for the length of the data field. When the development board receives the specific command, a serial data transmission mode is switched to receive all data of the data field.
Abstract:
An OS-independent peripheral plug-and-play and driver update method for embedded system and firmware data transmission method for embedded system platform is provided. The method includes: determining whether a peripheral device is connected to the embedded system host; when the peripheral device is connected to the embedded system host, acquire the ID of the peripheral device; connecting to a firmware server; according to the ID, acquiring a driver; packing the driver into a firmware and transmitting to the embedded system host; and performing a firmware update.
Abstract:
A touch-control communication system and a touch control communication method are provided in the present invention. The system includes a mobile device and a data transmission device. The mobile device has a capacitive touch panel, and the capacitive touch panel emits a touch sensing signal when the capacitive touch panel senses touch. The data transmission device is configured with a transceiver antenna and a signal inverting circuit. According to the transmission data, the data transmission device determines whether or not the signal inverting circuit outputs an inversion signal to the transceiver antenna, so that the capacitive touch panel obtains a logic state of the transmission data by detecting whether or not a touch point exists. Thus, the transmission data can be transmitted to the mobile device.
Abstract:
A light emitting device with a dimming visible light communication function and an interaction device applying for visible light are provided. The light emitting device with the dimming visible light communication function comprises a luminance adjusting unit, a control circuit and a light emitting device. The luminance adjusting unit outputs a luminance adjusting signal according to luminance adjusted by a user. The control circuit coupled to the luminance adjusting unit outputs a pulse width modulation (PWM) signal according to the luminance adjusting signal. The light emitting device outputs visible light, receives the PWM signal, and is turned on or off according to states of a logic high voltage and a logic low voltage of the PWM signal. In an idle mode, the PWM signal operates at a first frequency. In a light communication mode, an operating frequency of the PWM signal is changed according to transmitted data.
Abstract:
A method for unlocking a door, a method for renting asset and a system thereof are provided in the present invention. The door includes an audio receiver, and the method includes the steps of: storing a unlock sequence into a mobile device; performing a audio modulation to generates a audio modulation voiceprint signal, wherein the frequency range of the audio modulation voiceprint signal is in the audio frequency; playing the audio modulation voiceprint signal by using the speaker of the mobile device; when the audio receiver receives the audio modulation voiceprint signal, the method further includes: performing a audio demodulation to obtain the unlock sequence; and determining whether the door is unlock or not according to the unlock sequence.
Abstract:
An apparatus with both touch sensing and electrical field sensing functions and an interactive apparatus using the same are provided. The apparatus with both touch sensing and electrical field sensing functions comprises a control circuit, a first capacitive sensing electrode and a second capacitive sensing electrode. The first capacitive sensing electrode is coupled to a first sensing control terminal of the control circuit. The second capacitive sensing electrode is coupled to a second sensing control terminal of the control circuit. In a first period, the first capacitive sensing electrode is charged to a first voltage through the first sensing control terminal, and the second sensing control terminal supplies an electrical field pulse to the second capacitive sensing electrode such that the second capacitive sensing electrode outputs an electrical field pulse signal. In the first period, the control circuit determines whether the first capacitive sensing electrode is touched or not according to a period, during which a voltage of the first capacitive sensing electrode is discharged from the first voltage to a second voltage, and determines whether the second capacitive sensing electrode approximates the first capacitive sensing electrode or not according to whether the first capacitive sensing electrode synchronously detects the electrical field pulse or not.
Abstract:
A circuit for signal decoding in RFID or wireless power charging is provided in the present invention. The implement of the present invention is to add a current sense resistor connected to an upper switch or a lower switch the up arm switch or low arm switch to decode the signal on the current sense resistor. Since the error would occur in the original voltage decoder of the wireless power or RFID when the load is heavy and voltage signal swing is large, such that the charge status and then the off-line status cyclically occur and then the charge status . . . occurs in cycle when the mobile device is charging under charge. Since the present invention uses the voltage and current for decoding at the same time, the decoding would be succeed whenever the load is light or heavy.