Abstract:
A system is provided for removing dissolved metals from industrial wastewater by electrocoagulation. The system includes an electrocoagulation reactor with a DC power supply having an insulation support enclosure with positive and negative electrode plates disposed thereon. The electrode plates are insulated for each other but remain in direct contact with the wastewater as it flows between the electrodes. The DC power supply induces opposite charges on alternate electrodes thereby generating an electric field between adjacent electrodes to cause the electrodes to ionize and go into solution for interaction with the contaminants in the wastewater as it flows through the reactor. The reactor is housed in a pressure vessel container so the exterior pressure on the reactor is higher than its internal pressure preventing leakage of fluids and oxygen and hydrogen gases produced in the reactor by decomposition of water. The pressure vessel allows higher operating pressures to retain higher concentrations of dissolved oxygen and hydrogen dispersed in the water for reaction with the contaminants. The electrical supply includes explosion proof connection housings for operation in hazardous environments. The system also includes a cyclone filter for separating the precipitated solid particles from the fluid and automatic control of the reactor by monitoring fluid flow, temperature, pH, and pressure.
Abstract:
Flow-through capacitors are provided with one or more charge barrier layers. Ions trapped in the pore volume of flow-through capacitors cause inefficiencies as these ions are expelled during the charge cycle into the purification path. A charge barrier layer holds these pore volume ions to one side of a desired flow stream, thereby increasing the efficiency with which the flow-through capacitor purifies or concentrates ions.
Abstract:
Electrolytic reduced water free of hypochlorous acid and chlorine gas is provided which is effective for cancer treatment. Water including NaOH is subjected to electrolysis. Electrolytic reduced water obtained at a cathode electrode side has been found to suppress metastasis of cancer cells. The water had no effects on growth of healthy cells during a one-week test.
Abstract:
A process for producing improved alkaline water includes filtering potable source water to remove selected particles and then purifying the filtered water. Selected alkaline minerals are added to the purified water, with the resulting mineralized water being then electrolyzed to produce streams of acidic water and alkaline water, the alkaline water having a pH within the range of 9-10, a TDS range of 22-240 ppm (parts per million) and alkalinity in the range of 12-216 ppm.
Abstract:
An electrolytic process and apparatus purifies contaminated bulk aqueous solutions and remediates soil. The apparatus is an electrolytic treatment or remediation unit consisting of one or more electrolytic cells having a cathode chamber separated from at least one anode chamber by a separation membrane. The cathode chamber has cathode plates positioned at an angle to the perpendicular or vertical axis of the cell made of valve metals with an irreducible oxide coating. Non-turbulent flow of the solution in an interfacial zone adjacent to the cathode is controlled by the evolution of hydrogen during electrolysis, resulting in a steady state flow of colloidal particles and cations in the cathode-solution interface sufficient to collapse the Gouy-Chapman layer, thereby causing total and irreversible agglomeration of all colloidal particles. A separation membrane separates cathode and anode chambers and allows conductivity driven ionic transfers, and prevents electro-osmotic reflux of the anolyte. A maximum pH difference between the cathode and anode chambers, yielding a cathode chamber maximum pH of 9.8 and an anode chamber minimum pH of 3.2, ensures that the transient pH in the interfacial zone rises to levels in excess of 12.0, thereby enabling the precipitation of phosphates as alkaline earth phosphates and the hydrolysis of urea resulting in the oxidation of ammonia to form an oxidant for dissolved organic materials. The contaminated aqueous solution is subjected to high current density electrolysis, after which it is passed to a holding chamber, a filter chamber, and thereafter to at least one anode chamber.
Abstract:
Deionizers using the electrode configurations of electrochemical capacitors are described, wherein the deionizing process is called capacitive deionization (CDI). During deionization, a DC electric field is applied to the cells and ions are adsorbed on the electrodes with a potential being developed across the electrodes. As electrosorption reaches a maximum or the cell voltage is built up to the applied voltage, the CDI electrodes are regenerated quickly and quantitatively by energy discharge to storage devices such as supercapacitors. In conjunction with a carousel or Ferris wheel design, the CDI electrodes can simultaneously and continuously undergo deionization and regeneration. By the responsive regeneration, the CDI electrodes can perform direct purification on solutions with salt content higher than seawater. More importantly, electrodes are restored, energy is recovered and contaminants are retained at regeneration, while regeneration requires no chemicals and produces no pollution.
Abstract:
An under the counter water treatment system to treat water from an outside supply source, is provided. A prefilter to remove sediment, organic compounds, and certain pollutants is first provided. Then the water enters a reverse osmosis system including reverse osmotic membrane which filters out impurities and very small particles providing highly purified water, and is stored in a water tank. When the water exits the tank, it passes through an electrolytic cell having a plurality of plates. This electrolytic treatment creates oxygen in the water, inserts free electrons into the water, and improves the taste and affinity of the water for accepting other minerals. After passing out of the electrolytic cell, the water may pass through a final treatment stage after which it is provided at an outlet tap for consumption by an end user.
Abstract:
In the present invention, by making an alkaline ionic water conditioner in which an electrolysis current detection device has a plurality of output means different in conversion level, and conversion levels are switched in accordance with the level of a current flowing in an electrolyte, and which has an optimum pH control function by performing duty control, in case of electrifying certain raw water, or in case of adding brine for strongly accelerating generation, when a current flowing between electrode plates is high, the conversion level of the electrolysis current detection device is lowered to generate electrolyte water of pH 10 or more. When the current is low, an electrolysis current detection range with a high resolution can be obtained by raising the conversion level, proper pH control can be performed in accordance with change in electrolysis current in the quality of raw water and adding brine.
Abstract:
A method of and system for cleansing a toilet or urinal are proposed which require less maintenance work and are safer to users than conventional methods using acid substances, and which can prevent the formation of stain on the toilet or urinal effectively and suppress the generation of ammonia sufficiently, thus accomplishing a sufficient countermeasure to the stench. A urinal (A1) is provided with a continuous electrolytic cell (1) having at least a pair of electrodes, a passage formed between the electrodes, and an inlet and an outlet that lead to the passage. Tap water is electrolyzed by the continuous electrolytic cell (1), whereby free chlorine is produced. Then the water containing free chlorine produced is supplied to the urinal (A1), and the water containing free chlorine sterilizes the inside of the urinal, thus preventing urease, an enzyme carried by bacteria, from acting to decompose urea. By this method, the deposition of uric stone and the generation of the stain and stench are suppressed on the surface of the urinal and in the trap of the urinal.
Abstract:
An apparatus and method for electrocoriolysis, the separation of ionic substances from liquids in the electrodynamic mode. The method maximizes centrifugal forces on a fluid contained in a chamber having oppositely polarized electrodes. A feed fluid is fed into the chamber. Spacing of the electrodes can be minimized for enhancement of the process. A constant voltage can be applied. Centrifugal force and the electric potential across the chamber create enhanced separation. Concentrated solution can be removed from a location in the chamber and depleted solution from another location.