Abstract:
A method for separating and recovering ultrafine particulate solid material from a suspension or slurry of the solid material and a hydrocarbon liquid by precipitation or flocculation of a heavy fraction of the hydrocarbon liquid with an effective amount of a precipitation or flocculation agent such that the precipitated heavy fraction encapsulates the particulate solid material. The method further comprises coking the precipitated heavy fraction and grinding the coked product to an ultrafine size.
Abstract:
A method for separating and recovering ultrafine particulate solid material from a suspension or slurry of the solid material and a hydrocarbon liquid by precipitation or flocculation of a heavy fraction of the hydrocarbon liquid with an effective amount of a precipitation or flocculation agent such that the precipitated heavy fraction encapsulates the particulate solid material. The method further comprises coking the precipitated heavy fraction and grinding the coked product to an ultrafine size.
Abstract:
A process for removing color bodies from hydrocarbon-based fuels, particularly gasoline, using an activated carbon is disclosed. Color bodies are removed from the fuel by contacting the fuel with such activated carbon having within this pore structure a fuel decolorizing amount of polymerized phosphoric acid or reduced transition metals. Phosphoric acid may be added to a non-phosphoric acid-activated carbon (such as steam activated coal-based) prior to the subsequent heat treatment or one can take advantage of residual phosphoric acid present in, for example, a phosphoric acid-activated wood-based carbon. Similarly, transition metals such as copper may be added to an activated carbon in a salt form in addition to whatever is already present therein as impurities.
Abstract:
The invention consists of a method for treating polychlorinated biphenyl (PCB) contaminated media by: a) combining the media with a fluid containing one or more liquid hydrocarbons to form a media/fluid mixture; b) sonicating the mixture at audio frequency to extract PCB from the media into the fluid; and c) treating the fluid with sodium-containing alkali metal. The method may include additional steps to reduce the size of the media. Alternatively, the fluid can be decanted from the media after sonication and treated separately with sodium-containing alkali metal.
Abstract:
A process for the conversion of hydrocarbons that are solid or have a high boiling temperature and may be laden with metals, sulfur or sediments, into liquids (gasolines, gas oil, fuels) with the help of a jet of gas properly superheated between 600 and 800null C. The process comprises preheating a feed 5 in a heater 8 to a temperature below the selected temperature of a reactor 10. This feed is injected by injectors 4 into the empty reactor 10 (i.e., without catalyst.) The feed is treated with a jet of gas or superheated steam from superheater 2 to activate the feed. The activated products in the feed are allowed to stabilize at the selected temperature and at a selected pressure in the reactor and are then run through a series of extractors 13 to separate heavy and light hydrocarbons and to demetallize the feed. Useful products appearing in the form of water/hydrocarbon emulsions are generally demulsified in emulsion breaker 16 to form water laden with different impurities. The light phase containing the final hydrocarbons is heated in heater 98 and is separated into cuts of conventional products, according to the demand for refining by an extractor 18 similar to 13.
Abstract:
In a method of removing acidic compounds, color, and polynuclear aromatic hydrocarbons, and for removing or converting hydrocarbons containing heteroatoms from petroleum distillates, phase transfer catalyst is employed to facilitate the transfer of inorganic or organic bases to the substrate of the distillate. An inorganic or organic base, a phase transfer catalyst selected from the group including quaternary ammonium salts, polyol ethers and crown ethers, and used oil distillate are mixed and heated. Thereafter, contaminants are removed from the used oil distillate through distillation. A solvent is then mixed with the resulting distillate to extract contaminants therefrom. The solvent is recovered and distilled to separate the contaminants therefrom, and is then reused. The petroleum distillate having the contaminants separated therefrom is also distilled to remove any remaining solvent therefrom, with the recovered solvent being reused.
Abstract:
A composition and method for the removal of water from a water-containing hydrocarbon stream, and a method for the production of a metal/water-soluble polymer composite are provided. The composite includes a water-soluble polymer, such as guar gum, and a metal salt, such as aluminum nitrate or copper sulfate. The ratio of the metal salt to the water-soluble polymer is in the range from about 1:1 to about 5:1 by mass. The water-soluble polymer and the metal salt form a crosslinked material. The method for producing the metal/water-soluble polymer composite includes mixing a non-crosslinked water-soluble polymer with a metal salt and water to form a paste. The paste is then dried.
Abstract:
A system and process for generating, on-site, a sustained C6+C7 aromatic rich solvent stream for tar solvation within the olefin plant employing a two-fuel oil tower system receiving a hydrocarbon feed from a quench water separator drum, where the two-fuel oil tower system is configured to make a sufficient solvent stream containing C6+C7 aromatic rich hydrocarbons that is recycled and mixed with quench water going to the quench water separator drum to assist in removing tar molecules out of the quench water.
Abstract:
Assemblies and methods to enhance hydrotreating and fluid catalytic cracking (FCC) processes associated with a refining operation, during the processes, may include supplying a hydrocarbon feedstock to a cat feed hydrotreater (CFH) processing unit to produce CFH unit materials. The assemblies and methods also may include conditioning material samples, and analyzing the samples via one or more spectroscopic analyzers. The assemblies and methods further may include prescriptively controlling, via one or more FCC process controllers, based at least in part on the material properties, a FCC processing assembly, so that the prescriptively controlling results in causing the processes to produce CFH materials, intermediate materials, the unit materials, and/or the downstream materials having properties within selected ranges of target properties, thereby to cause the processes to achieve material outputs that more accurately and responsively converge on one or more of the target properties.
Abstract:
A system for crude oil desalting and dehydration includes a separation vessel defining a cavity extending along a central axis having a substantially-vertical orientation. The separation vessel comprises a first distributor configured to distribute a mixture within the cavity of the separation vessel, and a second distributor configured to distribute a wash fluid within the cavity of the separation vessel. The mixture comprises crude oil, water, dissolved salts, free salts, or combinations thereof, and the wash fluid comprises an aqueous fluid. The first distributor is disposed within the cavity below the second distributor, and an interface level controller is configured to detect an interface between an oil phase and an aqueous phase and to maintain the interface within a predetermined range within the cavity.