Abstract:
The present device has a wire drum connected to a sliding door through a wire cable and being rotated by the power of a motor, an electromagnetic brake which applies braking to the wire drum using a solenoid as the driving source, and a switch transistor which sends electricity to the solenoid when being turned on by a Hi signal from the output port of a controller. The interval between the solenoid and the switch transistor is connected through a line where the voltage level is raised when the switch transistor is turned off and the voltage level is lowered when the switch transistor is turned on. The line is connected through a failure detecting circuit to the input port of the controller.
Abstract:
A closing device for sliding portions of pieces of furniture, such as drawers and the like, consisting of a container fastened to the fixed or to the sliding portion of the piece of furniture wherein there are housed a mechanical energy accumulator and an actuation member that is sliding into a guide of the container, and of a pulling member, respectively fastened to the other side of the piece of furniture, which interacts with the actuation member. The actuation member is directly or indirectly slowed in its movement by a deceleration device based on the use of high-viscosity greases.
Abstract:
It is an object of the present invention to provide a rotary damper capable of automatically adjusting an exhibited braking force in correspondence with variation in load. A fluid chamber 2 into which viscous fluid is charged is formed in a casing 1. A vane 3 is disposed in the fluid chamber 2. The vane 3 is formed with a fluid passage 5, and is provided with a valve 6. The valve 6 automatically varies a flow rate of the viscous fluid passing through the fluid passage 5 in correspondence with variation in load. With this structure, it is possible to automatically adjust the exhibited braking force in correspondence with variation in load caused by variation in rotational motion of a subject to be controlled, and to reduce variation in rotation speed of the subject to be controlled to an extremely small value.
Abstract:
A clutch includes a moving gear member 65 being rotated integrally with a wheel at all times and engaged with a fixed gear member 69 when it is moved in a first direction and disengaged from the fixed gear member when it is moved in a second direction, an armature 61 pushing out the moving gear member 65 in the first direction when it is rotated relatively to the moving gear member 65, and an electromagnetic coil portion 60 that applies brake resistance to the armature 61 by attracting the armature 61 by magnetic force to restrict a concurrently-rotating-state of the armature 61 and the moving gear member 65.
Abstract:
A magnetic type floor hinge installed on a door, comprising an installing bracket, a moving plate, a compressing spring, a longitudinal hole in the moving plate, a main shaft cam in contact with the longitudinal hole. The main shaft cam is rotatably connected to a hinge shaft of the door and rotates with the hinge shaft. The magnetic type floor hinge further comprises at least one roller attached to the moving plate, a disk rotatably attached to the installing bracket, a yoke attached to the installing bracket and arranged around a magnetic operating part, and a gear-box comprising a plurality of gears that are connected between a rotating shaft of the main shaft cam and a rotating shaft of the disk. During operation of this magnetic type floor hinge, the rotating movement of the door hinge is converted to a rotating movement of the disk.
Abstract:
The provision of a rotational speed controller which is capable of increasing braking torque without a corresponding increase in size, and easily outputting braking torque assumed in the design, and minimizing variations in the braking torque. A casing 6 incorporates a shaft 7 inserted therein, a first rotor 8 rotated together with the shaft 7 in one piece, and a second rotor 10 rotated through the medium of the first rotor 8 and a planet gear 9. A first rotation mechanism for rotating the first rotor 8 is the shaft 7. A second rotation mechanism for rotating the second rotor 10 is a planetary gear mechanism operated in association with the rotation of the first rotor 8.
Abstract:
A control panel is retractably received within a recess in an appliance housing. The panel may be moved from an extended position wherein the control panel is exposed outside the cabinet to a retracted position wherein the control panel is enclosed within the recess. A spring urges the control panel to its extended position, and a latch is provided for releasably holding the control panel in its retracted position.
Abstract:
The present device has a wire drum connected to a sliding door through a wire cable and being rotated by the power of a motor, an electromagnetic brake which applies braking to the wire drum using a solenoid as the driving source, and a switch transistor which sends electricity to the solenoid when being turned on by a Hi signal from the output port of a controller. The interval between the solenoid and the switch transistor is connected through a line where the voltage level is raised when the switch transistor is turned off and the voltage level is lowered when the switch transistor is turned on. The line is connected through a failure detecting circuit to the input port of the controller.
Abstract:
The clutch includes a drive disk, a follower disk and a brake disk. When current flows, the follower disk is connected with the drive disk to transmit a power from a driving unit to a door-opening/closing mechanism. When no current flows, the follower disk is separated from the drive disk to cut off the power transmission from the driving unit to the door-opening/closing mechanism. In a state that the drive disk and the follower disk are separated from each other, the brake disk is connected to the follower disk to brake the door-opening/closing mechanism in the opening direction of the door, and to allow the door-opening/closing mechanism to move in the closing direction of the door.
Abstract:
A closing device for sliding portions of pieces of furniture, such as drawers and the like, consisting of a container fastened to the fixed or to the sliding portion of the piece of furniture wherein there are housed a mechanical energy accumulator and an actuation member that is sliding into a guide of the container, and of a pulling member, respectively fastened to the other side of the piece of furniture, which interacts with the actuation member. The actuation member is directly or indirectly slowed in its movement by a deceleration device based on the use of high-viscosity greases.