Abstract:
A compliant shim for use between the root of a gas turbine fan blade and a dovetail groove in a gas turbine rotor disk to reduce fretting therebetween. The compliant shim has first and second slots for engaging tabs extending from the fan blade root. The slots and tabs cooperate to hold the shim during engine operation. An oxidation layer covers the compliant shim. The shim is augmented with an upstanding wall and a seal element to seal the gap that exists between platform edges of adjacent fan blades. This simple combination solves two complex problems, fatigue of fan assembly parts and loss of operating efficiency caused by fluid flow leakage.
Abstract:
A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base columnar thermal barrier coating (20) on the alloy surface, where a heat resistant ceramic oxide sheath material (32′ or 34′) covers the columns (28), and the sheath material is the reaction product of a precursor ceramic oxide sheath material and the base thermal barrier coating material.
Abstract:
A coated article comprises a substrate, an inner environmental resistant coating portion including Al on the substrate, and an outer heat energy reflecting and oxygen diffusion inhibiting coating portion outward of the inner portion. The outer coating portion is multi-layer, comprising 6-48 discrete stacked layers and a total outer coating portion thickness in the range of about 2.5-25 microns.
Abstract:
An aluminum or aluminum alloy surface which during use is exposed to sliding friction is coated to provide a chemical conversion coating of tin comprising 0.2-10.0 wt. % cobalt. For example, a swash plate type compressor has a cylinder block with cylinder bores disposed parallel to the axis of the cylinder block. A rotary shaft rotatably mounted within the cylinder block carries an aluminum swash plate. The swash plate has a coating preferably between 0.8 to 2.5 microns. The coating on the swash plate permits the use of low silicon alloy aluminum without the need of metal plating or high finish polishing.
Abstract:
A structural component is formed with an outer shell of sintered, solid, powder particles, and a porous core of sintered, hollow, bodies arranged in layers. The hollow bodies are of increased diameter in the layers in a direction from the outer periphery of the core towards the center of the core. The material of the outer shell and of the core is a metal or ceramic.
Abstract:
A lubricating layer having wear resistance and reliability on the wear resistance, and a compressor including a lubricating layer are provided. The compressor may include a lubricating layer coated on a frictional portion between a rotational shaft and a bearing. The lubricating layer may include at least one metal phase selected from a group consisting of Titanium (Ti); and Copper (Cu), Cobalt (Co), Nickel (Ni), and Zirconium (Zr), and may be a composite structure of amorphous and nanocrystalline materials.
Abstract:
A germanium containing nickel-based solder having a similar composition to a nickel-based superalloy is provided. As a result of which the proportion of γ′ formed in the solder is reduced. The solder also includes chromium, cobalt, molybdenum, tungsten, aluminum, and titanium. A component including the solder is also provided.
Abstract:
A Co-based alloy containing not less than 0.001 mass % and less than 0.100 mass % of C, not less than 9.0 mass % and less than 20.0 mass % of Cr, not less than 2.0 mass % and less than 5.0 mass % of Al, not less than 13.0 mass % and less than 20.0 mass % of W, and not less than 39.0 mass % and less than 55.0 mass % of Ni, with the remainder being made up by Co and unavoidable impurities, wherein the contents of Mo, Nb, Ti and Ta which are included in the unavoidable impurities are as follows: Mo
Abstract:
A germanium containing nickel-based solder having a similar composition to a nickel-based superalloy is provided. As a result of which the proportion of γ′ formed in the solder is reduced. The solder also includes chromium, cobalt, molybdenum, tungsten, aluminum, and titanium. A component including the solder is also provided.
Abstract:
A method of extending the useable life of a gas turbine component fabricated from a cobalt-based alloy is disclosed. The method includes applying a rejuvenation process to the alloy where the alloy is placed in a protected atmosphere and heated to three different elevated temperatures and held at the elevated temperatures for approximately four hours each. Application of the rejuvenation process allows gas turbine components to be returned to service for at least one more service interval of approximately 24,000 operating hours.