Abstract:
A method of operating an axial stage combustion system in a gas turbine engine (12) including an EGR system (14) that extracts a portion of exhaust gas produced by the gas turbine engine (12) to a second axial stage of a combustor (18). The extracted exhaust gas is provided at an elevated temperature to a group of injector nozzles (50) at the second axial stage (34) of the combustor (18). A secondary fuel supply line (34) extends to an inlet on each of the injector nozzles (50), and the fuel is mixed with the exhaust gas within the injector nozzles (50) and the mixture of fuel and exhaust gas is injected into the second axial stage (34) of the combustor (18).
Abstract:
A high speed burner having very low polluting emissions, suitable for the process for heat treatment furnaces of a load in free atmosphere. The burner is capable of creating a compact and lean flame with the peculiarity of keeping the NOx emissions at very low levels at any chamber temperature and at any excess combustion air. The burner requires a single inlet for the comburent air and a single inlet for the combustible gas.
Abstract:
A method of decreasing a concentration of nitrogen oxides in a combustion gas flowing through a vessel including: generating a flue gas in a combustion zone of the vessel, the flue gas containing nitrogen oxides and carbon monoxide; providing overfire air into a burnout zone of the vessel from a first injector of overfire air to oxidize at least some of the carbon monoxide in the flue gas; injecting a selective reducing agent concurrent with overfire air at a level in the burnout zone downstream of the first injector of overfire air and downstream of the oxidization of the carbon monoxide, and reacting the selective reducing agent with the flue gas to reduce the nitrogen oxides.
Abstract:
A method of decreasing a concentration of nitrogen oxides in a combustion gas flowing through a vessel including: generating a flue gas in a combustion zone of the vessel, the flue gas containing nitrogen oxides and carbon monoxide; providing overfire air into a burnout zone of the vessel from a first injector of overfire air to oxidize at least some of the carbon monoxide in the flue gas; injecting a selective reducing agent concurrent with overfire air at a level in the burnout zone downstream of the first injector of overfire air and downstream of the oxidization of the carbon monoxide, and reacting the selective reducing agent with the flue gas to reduce the nitrogen oxides.
Abstract:
The invention relates to a thermal generator comprising a furnace tube (2) wherein a fuel is burnt, recombustion means (14, 15) for reducing the nitrogen oxides content present in said fumes and means (3) for recovering the heat of the fumes resulting from said combustion. The invention is characterized in that recombustion means (14, 15) are arranged in containment means (11).
Abstract:
Combustion system comprising a furnace having a thermal load and a combustion atmosphere disposed therein; one or more fuel lances adapted to inject fuel into the combustion atmosphere; and one or more igniters associated with the one or more fuel lances and adapted to ignite the fuel injected by the one or more fuel lances into the combustion atmosphere.
Abstract:
A method to reduce mercury in gas emissions from the combustion of coal is disclosed. Mercury emissions can be reduced by staging combustion process and/or reducing boiler excess oxygen. Fly ash formed under combustion staging conditions is more reactive towards mercury than fly ash formed under typical combustion conditions. Reducing boiler excess oxygen can also improve ability of fly ash to adsorb mercury.
Abstract:
A nozzle comprising a nozzle body having an inlet face, an outlet face, and an inlet flow axis passing through the inlet and outlet faces, and two or more slots extending through the nozzle body from the inlet face to the outlet face. Each slot has a slot axis and the slot axis of at least one of the slots is not parallel to the inlet flow axis of the nozzle body. In another embodiment, the nozzle comprises a nozzle body having an inlet face, an outlet face, and an inlet flow axis passing through the inlet and outlet faces, and two or more slots extending through the nozzle body from the inlet face to the outlet face, each slot having a slot axis, wherein none of the slots intersect other slots and all of the slots are in fluid flow communication with a common fluid supply conduit. The nozzles may be used to inject secondary fuel in a burner system having a central burner combusting a primary fuel surrounded by secondary fuel injection nozzles.
Abstract:
A nozzle comprising a nozzle body having an inlet face, an outlet face, and an inlet flow axis passing through the inlet and outlet faces, and two or more slots extending through the nozzle body from the inlet face to the outlet face. Each slot has a slot axis and the slot axis of at least one of the slots is not parallel to the inlet flow axis of the nozzle body. In another embodiment, the nozzle comprises a nozzle body having an inlet face, an outlet face, and an inlet flow axis passing through the inlet and outlet faces, and two or more slots extending through the nozzle body from the inlet face to the outlet face, each slot having a slot axis, wherein none of the slots intersect other slots and all of the slots are in fluid flow communication with a common fluid supply conduit. The nozzles may be used to inject secondary fuel in a burner system having a central burner combusting a primary fuel surrounded by secondary fuel injection nozzles.
Abstract:
A gas fired burner is provided for use in applications such as chemical process furnaces for process heaters in refineries and chemical plants, and the like. The burner is provided with a plurality of fuel gas inlets for enabling manipulation of the flame shape and combustion characteristics of the burner, based upon variation in the distribution of fuel gas between the various fuel gas inlets.A combination pilot and flame holder for a burner, such as may be used in process heaters and furnaces for refineries, chemical plants and the like, is also provided. The pilot is mounted atop a supply pipe for premixed fuel and air, which is positioned in the bore of a burner quarl. The pilot includes a radially outwardly extending flange which is upstream of a surface combustion flame holder for establishing a radially directed surface combustion flame.The present invention also provides a low-emissions burner and pilot system for use in such process heaters and furnaces.