Abstract:
An optical fiber (FD) that can be used for measuring pressure is arranged as follows. The optical fiber (FD) comprises a core (CO) and a cladding (CL) surrounding and contacting the core (CO). A stress-applying arrangement (SE1, SE2), which is embedded in the cladding (CL), applies constant anisotropic stress on the core (CO). This causes the core (CO) to exhibit a deformation. A pressure conversion arrangement (HO1, H02), which is also embedded in the cladding (CL), converts isotropic external pressure applied to the optical fiber (FD) into pressure-dependent anisotropic stress applied to the core (CO). The pressure conversion arrangement (HO1, H02) is disposed with respect to the stress-applying arrangement (SE1, SE2) so that the pressure-dependent anisotropic stress enhances the deformation of the core (CO) caused by the constant anisotropic stress.
Abstract:
A load and stress of a tensioner may be determined from the change in the strain of the tensioner. The strain of the tensioner may be detected by an optical device having a Fiber Bragg Grating (FBG) that is attached to the tensioner. An electrical signal may be generated in response to the detected change in the mechanical strain of the tensioner by processing the light reflected from an optical fiber coupled to the optical device. The electrical signal may be processed to calculate a load on the tensioner. The calculated load may be stored and analyzed, along with previously-stored values for the load, to determine the condition of the tensioner system, and whether the tensioner system requires maintenance.
Abstract:
Mechanical parameters of an object subjected to a force or condition are measured. A curved portion of a multicore optical fiber is attached to the object, and the multicore optical fiber includes a center core and plural off-center cores. A distributed, optically-based sensing technique is used to obtain information at each of multiple points along the curved portion from multiple ones of the cores of the multicore optical fiber. A curvature associated with the fiber attached to the object is determined using the information obtained from multiple ones of the cores. Strain information is obtained for the center core without having to obtain strain information for the off-center cores. Mechanical parameters are determined based on the strain information obtained for the center core and the curvature information obtained from the multiple ones of the cores.
Abstract:
A sensor is disclosed herein. The sensor includes a fiber operable to communicate a light wave. The sensor also includes at least first and second Fiber Bragg Gratings disposed along the fiber. The sensor also includes a structure operable to be Deformed in a plane of deformation. The at least first and second Fiber Bragg Gratings are disposed on opposite sides of the structure in the plane of deformation. The sensor also includes an interrogation unit operable to receive first and second signals corresponding to first and second wavelengths from the at least first and second Fiber Bragg Gratings. The first signal is associated with the first Fiber Bragg Grating and the second signal is associated with the second Fiber Bragg Grating. The sensor also includes a processor operably to derive a difference between the wavelengths of the first and second signals and compare the difference with data correlating wavelength differences to extents of deformation of the structure to yield a current extent of deformation.
Abstract:
A system, device and method include a sensing enabled device having an optical fiber configured to perform distributed sensing of temperature-induced strain. An interpretation module is configured to receive optical signals from the optical fiber within a body and interpret the optical signals to determine one or more temperatures or temperature gradients of the device.
Abstract:
An accurate measurement method and apparatus are disclosed for shape sensing with a multi-core fiber. A change in optical length is detected in ones of the cores in the multi-core fiber up to a point on the multi-core fiber. A location and/or a pointing direction are/is determined at the point on the multi-core fiber based on the detected changes in optical length. The accuracy of the determination is better than 0.5% of the optical length of the multi-core fiber up to the point on the multi-core fiber. In a preferred example embodiment, the determining includes determining a shape of at least a portion of the multi-core fiber based on the detected changes in optical length.
Abstract:
The present invention provides a method for making a multicore large diameter optical waveguide having a cross-section of at least about 0.3 millimeters, two or more inner cores, a cladding surrounding the two or more inner cores, and one or more side holes for reducing the bulk modulus of compressibility and maintaining the anti-buckling strength of the large diameter optical waveguide. The method features the steps of: assembling a preform for drawing a multicore large diameter optical waveguide having a cross-section of at least about 0.3 millimeters, by providing an outer tube having a cross-section of at least about 0.3 millimeters and arranging two or more preform elements in relation to the outer tube; heating the preform; and drawing the large diameter optical waveguide from the heated preform. In one embodiment, the method also includes the step of arranging at least one inner tube inside the outer tube.
Abstract:
A strain sensing cable including one or more strain sensing elements and a strain transfer medium extruded directly onto the one or more strain sensing elements disposed within the strain transfer medium. The strain transfer medium is operatively arranged to transfer strain experienced by the cable to the one or more strain sensing elements. A method of making a strain sensing cable is also included.
Abstract:
In one embodiment, a force sensor apparatus is provided including a tube portion having a plurality of radial ribs and a strain gauge positioned over each of the plurality of radial ribs, a proximal end of the tube portion that operably couples to a shaft of a surgical instrument that operably couples to a manipulator arm of a robotic surgical system, and a distal end of the tube portion that proximally couples to a wrist joint coupled to an end effector.
Abstract:
A fiber Bragg grating (FBG) sensor structure, a method of fabricating a FBG sensor structure, and a method of employing a FBG sensor structure comprising an optical fiber portion having at least one FBG formed therein. The FBG sensor structure comprises an optical fiber portion having at least one FBG formed therein; and a sleeve structure capable of transferring vibrations and/or strain along a length thereof; wherein the optical fiber portion is coupled to the sleeve structure such that the central wavelength of the FBG, is variable under the transferred vibrations and/or strain.