Abstract:
An air-coupled ultrasonic plane stress detection method for a composite material based on dual-modal sound-time ratios of a Lamb wave includes: S1: assembling a detection device; S2: based on the detection device and the dual-modal sound-time ratios of the Lamb wave in S1, using unidirectionally loaded stress to obtain different stress coefficient relations; S3: based on the stress coefficient relations in S2, solving stress coefficients; S4: based on the stress coefficients in S3, acquiring three sound-time ratios; S5: based on the sound-time ratios in S4, describing a stress state of a detection point; and S6: repeating S4 and S5 till completing detection and scanning. The method improves the accuracy of stress coefficient calibration and air-coupled ultrasonic stress representation of a composite material panel greatly.
Abstract:
An ultrasonic test device and test method for service stress of a moving mechanical component, where the device comprises an ultrasonic probe, a coupling fluid, a pressure-maintaining cover and universal wheels. The cover is vertically arranged above an inspected position of an inspected component, an interior of the pressure-maintaining cover is filled with coupling fluid, a bottom of the cover is provided with a structure permeable to the coupling fluid to form a coupling fluid film between the inspected position and the bottom of the cover, and a top of the cover is equipped with the ultrasonic probe. A detection part at a lower part of the ultrasonic probe extends into the coupling fluid of the cover and is vertical to the bottom of the cover without contact. The distance between the ultrasonic probe and the inspected component is kept unchanged through the universal wheels.
Abstract:
There is provided a method for measuring a contact force applied to each tube constituting a tube bundle disposed in a fluid from a vibration damping member by using a probe inserted into each tube. Characteristic data defining a relationship between a value measured by the probe and the contact force is previously prepared. Then, the probe is inserted into the tube, and the contact force is calculated using the measurement value of the probe, based on the characteristic data.
Abstract:
A system, device, and methods include or utilize a microphone, a processor, and a user interface. The microphone senses sound and in response outputs a sound signal indicative of the sound. The processor is coupled to the microphone to receive the sound signal, configured to analyze the sound signal to identify in the sound signal an impact of a golf club with a golf ball during a swing of the golf club and determine a characteristic of the swing of the golf club based on a portion of the sound signal corresponding to sound sensed, at least in part, before the impact. The user interface is coupled to the processor and configured to display information related to the characteristic of the swing as determined by the processor.
Abstract:
A sensor device, comprising two symmetrically disposed sonolucent wedges (5), and a connecting piece for fixedly connecting the two sonolucent wedges (5); the upper surfaces of the sonolucent wedges (5) are provided with inclined planes; installation holes are formed on the inclined planes; transducers (3) are installed in respective installation holes; one transducer (3) is used to generate ultrasonic waves, and the other transducer (3) is used to receive the ultrasonic waves generated by the previous transducer (3). The residual stress detection system comprises a sensor device, an ultrasonic transmission card, and a data acquisition card.
Abstract:
A prosthetic component suitable for long-term implantation is provided. The prosthetic component measures a parameter of the muscular-skeletal system is disclosed. The prosthetic component comprises a first structure having at least one support surface, a second structure having at least one feature configured to couple to bone, and at least one sensor. The prosthetic component is a housing for the at least one sensor and electronic circuitry. The electronic circuitry is hermetically sealed from an external environment. The at least one sensor couples to the support surface of the first structure. The support surface of the first structure is compliant. The first and second structure are coupled together housing the at least one sensor and electronic circuitry.
Abstract:
Methods and apparatus, including computer program products, are provided for determining rail stress. The method may include generating at least one ultrasonic guided wave to enable the at least one ultrasonic guided wave to propagate through a rail; detecting at least one of a fundamental frequency component of the at least one ultrasonic guided wave, one or more harmonics of the at least one ultrasonic guided wave, and/or a mixing component of the at least one ultrasonic guided wave; and determining a stress of the rail based on at least a nonlinearity parameter determined from the detected at least one of the fundamental frequency component, the one or more harmonics, and the mixing component. Related apparatus, systems, methods, and articles are also described.
Abstract:
A surface acoustic wave sensor system for determining environmental conditions on a substrate. The system comprises an interrogator for producing an RF interrogating signal transmitted by an antenna to an interdigital transducer mounted on the substrate for producing an incident surface acoustic wave responsive to the interrogating signal. A plurality of reflector arrays mounted on the substrate produce a like plurality of reflected surface acoustic waves; a spacing between adjacent ones of the plurality of reflector arrays comprising a non-uniform distance. The plurality of reflected surface acoustic waves are responsive to the environmental condition and exhibit a characteristic from which the environmental condition can be determined by a processing component.
Abstract:
A system for taking a measurement at a connection element. The system has a force sensor having a first side and a second side. The force sensor is configured to provide a measured value representative for a force acting between the first and the second side of the force sensor. The system also has an ultrasonic sensor and a positioning bushing The positioning bushing has a positioning bushing recess, which is configured to receive the ultrasonic sensor, at least in part. The system also has a separate sensor bushing, mechanically coupled to the first side of the force sensor, and having a sensor bushing recess. The sensor bushing recess is configured to receive, at least in part, the positioning bushing and the first end of the connection element. A second end of the connection element can be mechanically coupled to the second side of the force sensor.
Abstract:
In an apparatus and a method of evaluating a clamp force (F) in a threaded joint between a bolt and a matching threaded piece during a tightening operation, a torque (T) provided to the joint is continuously measured and ultra-sonic pulses are simultaneously induced into the bolt such that a time of flight (TOF) of the pulses in the bolt is measured. In response to an increase of the measured torque (T) an increase rate (dT/dα) of the torque (T) is determined, from which an initial rotation angle (α0) where the torque (T) starts to increase due to bolt deformation is determined. An increase rate (dTOF/dα) of the time of flight (TOF) is also determined. A total increase of the time of flight (ΔTOF) during the tightening operation is then determined based on the initial rotation angle (α0) and the increase rate (dTOF/dα) of the time of flight (TOF).