Abstract:
In a method of determining the refractive index of a gaseous, liquid or solid sample, preferably a gaseous or liquid sample, there is used a waveguide resonator (1) which includes an open waveguide (4) and a closed waveguide (5) located adjacent the open waveguide. The sample is brought to the vicinity of the closed waveguide (5) so as to influence the proximal surroundings of the waveguide and therewith its effective refractive index. Light derived from a light source (9) is coupled to one end of the open waveguide (4) and transmitted light is measured at the other end of the open waveguide to establish the influence of the sample on the resonance wavelength and therewith determine the refractive index of the sample or a sample-related refractive index difference. A device for carrying out the method includes a waveguide resonator having a sample contact area (12) adjacent the closed waveguide (5) of the waveguide resonator.
Abstract:
An apparatus useful in immunoassay of a fluid, light is directed to an optical sensor wherein the light is transmitted to a replaceable optical device that is responsive to index of refraction in a sensing region thereof that is exposed to the fluid. One portion of the light is transmitted via a compensation path that includes the sensing region to a first detector. Another portion of the light is transmitted via a sensing path that includes the sensing region to another detector. In one embodiment a ratioing device receives an output from each detector and provides a signal responsive to the ratio of the outputs. The replaceable optical device typically comprises a pair of channel waveguides in directional coupling arrangement, or a pair of channel waveguides in an interferometer arrangement, or a ridge waveguide having a curved or serpentine path configured so that nonspecific sensing effects are compensated.
Abstract:
In apparatus useful in immunoassay of a fluid, light is directed to an optical sensor wherein the light is transmitted to a replaceable optical device that is responsive to index of refraction in a sensing region thereof that is exposed to the fluid. One portion of the light is transmitted via a reference path to a first detector. Another portion of the light is transmitted via a sensing path that includes the sensing region to another detector. A ratioing device receives an output from each detector and provides a signal responsive to the ratio of the outputs. The replaceable optical device typically comprises a pair of channel waveguides in directional coupling arrangement, or a pair of channel waveguides in an interferometer arrangement, or a ridge waveguide having a serpentine path.