Abstract:
Systems and methods are disclosed for user configurable pressure sensitive keys and techniques for controlling these keys for keyboards. User configuration information, including information for user configurable granularity scales for pressure levels, can be communicated from a host system to the keyboard and stored for later use by a keyboard controller to control the operation of the pressure sensitive keys. In this way, greater control of the pressure sensitive keys can be provided. This configurability is of particular use for applications such as where the keyboard is being used for gaming by a user running a gaming application on an information handling system.
Abstract:
A pressure-sensitive element of the present disclosure includes a substrate, a conductive structure, an elastic electrode portion, and an electrode supporting component. The conductive structure extends from the substrate. The elastic electrode portion opposes a tip of the conductive structure. The electrode supporting component opposes the substrate with the conductive structure and the elastic electrode portion interposed therebetween, supports the elastic electrode portion, and has flexibility. In the pressure-sensitive element, the conductive structure includes a structural component which extends from the substrate and which has a higher elastic modulus than that of the elastic electrode portion, and a conductive layer which is coated on a surface of the structural component. In the pressure-sensitive element, the elastic electrode portion has a flat surface which opposes the conductive structure and which is capable of being brought into contact with the conductive structure.
Abstract:
A headphones apparatus with a touch input unit, and a mobile device for connecting to the headphones are provided. The apparatus includes a microphone for receiving audio signals, a left loudspeaker for outputting a left audio signal, a right loudspeaker for outputting a right audio signal, a touch input unit for receiving a user's operating signals to control a mobile device, and a plug. The plug includes a sensing contact for transmitting the operating signals from the touch input unit to the mobile device, a microphone contact connected to the microphone for supplying bias voltage to the microphone, a left audio contact connected to the left loudspeaker, a right audio contact connect to the right loudspeaker, and a ground contact.
Abstract:
Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
Abstract:
Input device adhesive techniques are described. A pressure sensitive key includes a sensor substrate having one or more conductors, a spacer layer, and a flexible contact layer. The spacer layer is disposed proximal to the sensor substrate and has at least one opening. The flexible contact layer is spaced apart from the sensor substrate by the spacer layer and configured to flex through the opening in response to an applied pressure to initiate an input. The flexible contact layer is secured to the spacer layer such that at first edge, the flexible contact layer is secured to the spacer layer at an approximate midpoint of the first edge and is not secured to the spacer along another portion of the first edge and at a second edge, the flexible contact layer is not secured to the spacer layer along an approximate midpoint of the second edge.
Abstract:
Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
Abstract:
Flexible hinge and removable attachment techniques are described. In one or more implementations, a flexible hinge is configured to communicatively and physically couple an input device to a computing device and may implement functionality such as a support layer and minimum bend radius. The input device may also include functionality to promote a secure physical connection between the input device and the computing device. One example of this includes use of one or more protrusions that are configured to be removed from respective cavities of the computing device along a particular axis but mechanically bind along other axes. Other techniques include use of a laminate structure to form a connection portion of the input device.
Abstract:
Systems and methods are employed for implementing haptics for pressure sensitive keyboards, such as the type of keyboards having keys that produce alternating digital open/short signals that emulate actuation of conventional “momentary on” digital keys. The disclosed systems and methods may be implemented to provide haptics for both touch typing and variable pressure sensitive operation of a pressure sensitive keyboard. Users of a variable pressure keyboard may be provided with a variable pressure haptics effect, e.g., to enable the user to intuitively understand from the haptics vibration produced by the key how much pressure they are applying to a given key at any given time. Vibration characteristics (e.g., vibration rate, vibration waveform pattern, etc.) of a given pressed key may be varied in real time in coordination with, or in response to, corresponding changes in user pressure applied to the same given key.
Abstract:
Input device equalization techniques are described. In one or more implementations, an input device includes a sensor substrate having a plurality of sets of one or more conductors of a respective plurality of pressure sensitive keys, a spacer layer disposed proximal to the sensor substrate and having a plurality of openings that expose the plurality of sets of conductors, respectively, a flexible contact layer, and a press equalization device. The pressure equalization device is formed as a series of connected channels that connect one or more of the plurality of openings to an outside area of the input device to permit air pressure of the outside area to generally equalize with air pressure within the one or more of the plurality of openings.
Abstract:
Input device adhesive techniques are described. A pressure sensitive key includes a sensor substrate having one or more conductors, a spacer layer, and a flexible contact layer. The spacer layer is disposed proximal to the sensor substrate and has at least one opening. The flexible contact layer is spaced apart from the sensor substrate by the spacer layer and configured to flex through the opening in response to an applied pressure to initiate an input. The flexible contact layer is secured to the spacer layer such that at first edge, the flexible contact layer is secured to the spacer layer at an approximate midpoint of the first edge and is not secured to the spacer along another portion of the first edge and at a second edge, the flexible contact layer is not secured to the spacer layer along an approximate midpoint of the second edge.