Abstract:
Disclosed are a cold cathode fluorescent lamp, a container for receiving the same and a liquid crystal display device having the container. The lamp includes a lamp tube, a first electrode having a first end disposed inside the lamp tube and a second end disposed outside the lamp tube and a second electrode plated on an outer surface of the lamp tube. The cold cathode fluorescent lamp is easily coupled/separated to/from the container having a clip type power-supplying module in a clip-coupling manner. In addition, a shock absorbing member is installed at the clip type power-supplying module so as to absorb an impact applied to the cold cathode fluorescent lamp. A brightness non-uniformity between cold cathode fluorescent lamps can be prevented, a power consumption of the cold cathode fluorescent lamp can be reduced, and an assembling work and productivity are remarkably improved.
Abstract:
Disclosed are a lamp, a method of fabricating the same and an LCD having the same. Electrode is disposed on an outer surface of a lamp tube, and an adhesive member is interposed between the electrode and the lamp tube. The adhesive member is hardened and expanded by means of heating, and adheres the electrode to the lamp tube. Thus, voids generated during forming the electrode on the outer surface is removed, and images having a high quality are obtained.
Abstract:
A highly loaded fluorescent lamp (10) (FIG. 1) comprises a hollow, translucent glass body (12) containing a medium capable of generating at least several wavelengths of UV radiation. A plurality of phosphors is disposed on the inside surface of the glass body (12), the plurality of phosphors visible radiation upon exposure to the UV radiation. At least one of the plurality of phosphors is subject to degradation upon long-term exposure to one of the at least one of several wavelengths of UV radiation. The at least one of the plurality of phosphors subject to degradation is installed (FIG. 12) adjacent the inside surface (14) of the glass body (12) to form a first layer (16); and the remainder of the plurality of phosphors is disposed on the first layer to form a second layer (18), the second layer not being subject to long-term degradation upon exposure to the UV radiation.
Abstract:
A discharge vessel with an excimer fill comprises a cap, electrodes and a fill having at least one noble gas and a halogen, which, when the lamp is operating, together form an excimer, the discharge vessel being manufactured from quartz glass. The inner wall of the discharge vessel is completely covered with a passivation layer of a metal oxide of the metals Al, Hf, Y or Sc or the mixed oxides thereof, the layer having an amorphous structure and its layer thickness being 20 to 200 nm.
Abstract:
A dry cleaning device which uses a double-cylinder type dielectric barrier discharge lamp 10a, 10b as a ultraviolet source. An outside electrode 2 in a trough-like shape is tightly contacted with the outer tube 1a of a discharge container 1, reflecting the ultraviolet light and directs it toward a workpiece 40. A cover 3 covers the outside electrode 2 for insulation of the outside electrode 2 from the ozone. In the clearance between the outer tube 1a of the discharge container 1 and an N2 introduction tube, an inside electrode 6 in a net-like shape is accommodated, nitrogen (N2) gas is caused to flow through the clearance for cooling the lamp 10a, 10b.
Abstract:
A discharge vessel with an excimer fill comprises a cap, electrodes and a fill having at least one noble gas and a halogen, which, when the lamp is operating, together form an excimer, the discharge vessel being manufactured from quartz glass. The inner wall of the discharge vessel is completely covered with a passivation layer of a metal oxide of the metals Al, Hf, Y or Sc or the mixed oxides thereof, the layer having an amorphous structure and its layer thickness being 20 to 200 nm.
Abstract:
An irradiation treatment device is provided in which uniform irradiation treatment with high speed can be achieved without damaging a substrate, even in the case in which the substrate to be treated is enlarged and exceeds the length of the rod-shaped dielectric barrier discharge lamp. The object is achieved in a substrate treatment device using dielectric barrier discharge lamps in which the dielectric barrier discharge lamps and the substrate are transported relative to one another and in which the surface of this substrate is irradiated with UV light from the dielectric barrier discharge lamps, in that the length for the above described dielectric barrier discharge lamps in the lengthwise direction is less than the length in the direction perpendicular to the transport direction of the substrate. There are at least two dielectric barrier discharge lamps and there is an area of the above described substrate which has been irradiated by one dielectric barrier discharge lamp and there is an area of the above described substrate which has been irradiated by the other dielectric barrier discharge lamp during transport of this substrate such that they come to rest on one another at least in one part, and that with respect to the UV light emitted by the respective dielectric barrier discharge lamp in this area in which superposition occurs, there are light screening means by which a transition is effected between the two lamps.
Abstract:
A flat luminescent lamp and a method for manufacturing the same are disclosed in the present invention. More specifically, a flat luminescent lamp includes first and second substrates each having a plurality of grooves in sides which the first and second substrates face into each other, first and second electrodes in the grooves, first and second phosphor layers in the first and second substrates including the first and second electrodes, respectively, and a frame for sealing the first and second substrates.
Abstract:
The present invention provides a DBD light sources having flat-plate, large-area panels and a system for designing such DBD light sources that withhold the mechanical stress caused during the lamp envelope cleaning (evacuation at elevated temperatures) and the pressure of final gas filling (if other than atmospheric). One or more embodiments of the present invention place mechanical stems inside of the lamp envelope which greatly reduce the mechanical stress at the sealing surface, as well as over the entire large area panel surface. In one embodiment, the stems are arranged so that they are equidistant. This design enables the mechanical stability of the lamp envelope during the cleaning (vacuum) process, as well as the filling of the lamp envelopes at other than atmospheric gas pressure.
Abstract:
A high pressure gas discharge lamp and the method of making same utilizing integrated circuit fabrication techniques. The lamp is manufactured from heat and pressure resistant planar substrates in which cavities are etched, by integrated circuit manufacturing techniques, so as to provide a cavity forming the gas discharge tube. Electrodes are deposited in the cavity. The cavity is filled with gas discharge materials such as mercury vapor, sodium vapor or metal halide. The substrates are bonded together and channels may be etched in the substrate so as to provide a means for connection to the electrodes. Electrodeless RF activated lamps may also be fabricated by this technique. Lamps fabricated from three or more planar substrates are disclosed.