Abstract:
Systems and methods for limiting volume in an audio playback device using a feedback controller are disclosed herein. In one example, a gain stage modulates gain of an audio signal based in part on feedback from a downstream limiter. The gain stage receives a first audio signal as well as a feedback signal from the feedback controller. Based at least in part on the feedback signal from the feedback controller, the gain stage modulates a gain of the first audio signal to provide a second audio signal. The second audio signal is delivered to the limiter, which limits the second audio signal to produce an output signal. The output signal is played back via a transducer. The feedback controller receives a gain reduction value from the limiter and determines a feedback signal to provide to the gain stage upstream of the limiter.
Abstract:
One or more example relate, generally, to generating radio frequency (RF) signals. An apparatus may include a signal generator, an amplification stage, and a feedback control loop. The signal generator may generate a pulsed radio frequency (RF) signal at least partially responsive to a digital pulsed waveform defined by one or more commands. The amplification stage may amplify the pulsed RF signal. The feedback control loop may be coupled to the amplification stage to regulate a power level of respective steps of the pulsed RF signal.
Abstract:
Provided are automatic level control (ALC) circuit, signal source, method for controlling signal source output power, and storage medium. The ALC circuit includes: at least two stages of ALC loops, each ALC loop including an amplifier, a coupler, a power detector, and an attenuation control module connected sequentially. An output end of an adjustable attenuator is connected to an input node of first stage of ALC loop; an output node of each stage of ALC loop, other than last stage of ALC loop, is connected to a normally on end of a two-way single-on switch, a first gating end of the two-way single-on switch is connected to an input node of a next stage of ALC loop, and the output node of the last stage of ALC loop and a second gating end of each two-way single-on switch are connected to an output end of the ALC circuit.
Abstract:
A noise squelch processor generates a noise squelch determination signal by comparing a noise level and a threshold value with each other. A carrier detector generates a carrier determination signal indicating whether or not a reception signal is present based on a signal strength of the reception signal. An integrator controller controls an integrator to set a cutoff frequency of the integrator to a second cutoff frequency higher than a first cutoff frequency at a first timing when the carrier detector generates a carrier determination signal indicating that the reception signal is present, and to switch the cutoff frequency of the integrator from the second cutoff frequency to the first cutoff frequency at a second timing after an elapse of a predetermined period from the first timing.
Abstract:
Some embodiments of the invention are directed to an audio production system which is more portable, less expensive, faster to set up, and simpler and easier to use than conventional audio production tools. An audio production system implemented in accordance with some embodiments of the invention may therefore be more accessible to the typical user, and easier and more enjoyable to use, than conventional audio production tools.
Abstract:
Amplifier systems and methods are provided that include a fixed gain amplification stage coupled to an adjustable attenuation stage further coupled to a variable gain amplification stage. A controller controls an amount of attenuation provided by the adjustable attenuation stage and an amount of gain provided by the variable gain amplification stage to maintain any of various noise, efficiency, and/or linearity requirements of the amplifier system.
Abstract:
The gain of an amplifier in a receiver operating in a cellular communication system is controlled by determining one or more gain variability metrics, which are then used to produce first and second threshold values. A frequency difference between a current carrier frequency and a target carrier frequency is ascertained and then compared to the threshold values. Target gain setting production is based on comparison results: If the frequency difference is larger than the first threshold, a full automatic gain control algorithm is performed; if the frequency difference is smaller than the first threshold and larger than the second threshold, an optimized automatic gain control algorithm is performed, wherein the optimized automatic gain control algorithm uses a current gain setting as a starting point; and if the frequency difference is smaller than both the first and second thresholds, the current gain setting is used as the target gain setting.
Abstract:
A transmitter includes a dual mode modulator and an amplifier coupled to the dual mode modulator. The dual mode modulator implements a linear modulation scheme during a first mode of the modulator to produce a variable envelope modulated signal. The dual mode modulator implements a non-linear modulation scheme during a second mode of the modulator to produce a constant envelope modulated signal. The amplifier is biased as a linear amplifier during the first mode of the modulator and is biased as a non-linear amplifier during the second mode of the modulator. A feed-forward connection between the dual mode modulator and the amplifier is used to indicate a change in modulation mode and to adjust the bias of the amplifier. A power of the constant envelope modulated signal is increased such that an operating point of the amplifier remains substantially constant during the first and second modes of the modulator.
Abstract:
In a high frequency power amplifier circuit that supplies a bias to an amplifying FET by a current mirror method, scattering of a threshold voltage Vth due to the scattering of the channel impurity concentration of the FET, and a shift of a bias point caused by the scattering of the threshold voltage Vth and a channel length modulation coefficient λ due to a short channel effect are corrected automatically. The scattering of a high frequency power amplifying characteristic can be reduced as a result.
Abstract:
A gain switching circuit switches a conversion gain of a preamplifier that is configured with a series circuit formed with a first resistor and a first switching element and a series circuit formed with a second resistor and a second switching element respectively connected in parallel with a feedback resistor. The gain switching circuit includes a first operating unit that generates a first switching element operating signal for closing the first switching element within a first gain switching period, and a second operating unit that generates a second switching element operating signal for closing the second switching element within a second gain switching period.